zbMATH — the first resource for mathematics

Structure of the laminar boundary layer of a disperse medium on a flat plate. (English. Russian original) Zbl 0461.76054
Fluid Dyn. 15, 512-517 (1981); translation from Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 1980, No. 4, 48-54 (1980).

76N20 Boundary-layer theory for compressible fluids and gas dynamics
76T99 Multiphase and multicomponent flows
Full Text: DOI
[1] H. H. Chin, ?Boundary layer flow with suspended particles,? Princeton Univ. Dept. Aeronaut. Eng. Rept., No. 620 (1962).
[2] Soo Sao-Lee, Fluid Dynamics of Multiphase Systems, Blaisdell, Waltham, Mass. (1967). · Zbl 0173.52901
[3] R. E. Singleton, ?The compressible gas-solid particle flow over a semi-infinite flat plate,? Z. Angew. Math. Phys.,16, No. 4 (1965).
[4] F. E. Marble, ?Dynamics of a gas containing small solid particles,? in: Combustion and Propulsion, Pergamon Press, Oxford (1963).
[5] L. S. Soo, ?Non-equilibrium fluid dynamics-laminar flow over a flat plate,? Z. Agnew. Math. Phys. 19, No. 4 (1968). · Zbl 0164.28302
[6] R. I. Nigmatulin, Fundamentals of the Mechanics of Heterogenous Media [in Russian], Nauka, Moscow (1978).
[7] J. D. Cole, Perturbation Methods in Applied Mathematics, Blaisdell, Waltham, Mass. (1968). · Zbl 0162.12602
[8] V. P. Stulov, ?Equations of a laminar boundary layer in a two-phase medium,? Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1 (1979). · Zbl 0413.76076
[9] H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1968). · Zbl 0096.20105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.