×

zbMATH — the first resource for mathematics

A numerical study of 2-D turbulence. (English) Zbl 0461.76040

MSC:
76F99 Turbulence
76D05 Navier-Stokes equations for incompressible viscous fluids
65C20 Probabilistic models, generic numerical methods in probability and statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Batchelor, G.K., Theory of homogeneous turbulence, (), 186 · Zbl 0053.14404
[2] Batchelor, G.K., Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. fluids suppl., 2, 233-239, (1969) · Zbl 0217.25801
[3] Brigham, E.O., The fast Fourier transform, (1974), Prentice-Hall Englewood Cliffs, N.J · Zbl 0375.65052
[4] Cooley, J.W.; Lewis, P.A.W.; Welch, P.D., The fast Fourier transform and its applications, IEEE trans. educ., E-12, No. 1, 27-34, (1969)
[5] Cooley, J.W.; Lewis, P.A.W.; Welch, P.D., The fast Fourier transform algorithm: programming considerations in the calculation of sine, cosine and Laplace transforms, J. sound vib., 12, 315-337, (1970) · Zbl 0195.46301
[6] Cooley, J.W.; Tukey, J.W., An algorithm for the machine calculation of complex Fourier series, Math. comp., 19, 297-301, (1965) · Zbl 0127.09002
[7] Deem, G.S.; Zabusky, N.J., Ergodic boundary in numerical simulations of two-dimensional turbulence, Phys. rev. lett., 27, 396-399, (1971) · Zbl 0232.76052
[8] Fornberg, B., On a Fourier method for the integration of hyperbolic equations, SIAM J. numer. anal., 11, 509-528, (1975) · Zbl 0349.35003
[9] Fox, D.G.; Orszag, S.A., Pseudospectral approximation to two-dimensional turbulence, J. comp. phys., 11, 612-619, (1973) · Zbl 0261.76041
[10] Gazdag, J., Time-differencing schemes and transform methods, IBM Palo Alto scientific center technical report no. G320-3330, (1975)
[11] Glassman, J.A., A generalization of the fast Fourier transform, IEEE trans. computers, C-19, No. 2, 105-116, (1970) · Zbl 0185.42501
[12] Herring, J.R.; Orszag, S.A.; Kraichman, R.H.; Fox, D.S., Decay of two-dimensional homogeneous turbulence, J. fluid mech., 66, 417-444, (1974), part 3 · Zbl 0296.76026
[13] Kraichnan, R.H., Inertial ranges in two-dimensional turbulence, Phys. fluids, 10, No. 7, 1417-1423, (1969)
[14] Kreiss, H.-O.; Oliger, J., Comparison of accurate methods for the integration of hyperbolic equations, Tellus, 24, 199-215, (1972)
[15] Leith, C.E., Diffusion approximation for two-dimensional turbulence, Phys. fluids, 11, 671-673, (1968) · Zbl 0182.29203
[16] Lilly, D.K., Numerical simulation of two-dimensional turbulence, Phys. fluids suppl., 2, 240-249, (1969) · Zbl 0263.76046
[17] Lilly, D.K., Numerical simulation on developing and decaying two-dimensional turbulence, J. fluid mech., 45, 395-415, (1971) · Zbl 0242.76027
[18] Onsager, L., Statistical hydrodynamics, Supplemento A1,, Vol. VI, Serie IX Del Nuovo Cimento, N. 2, 279-287, (1949)
[19] Orszag, S.A.; Israeli, M., Numerical simulation of viscous incompressible flow, Annu. rev. fluid mech., 6, 281-318, (1974)
[20] Phillips, N.A., (), 501-504
[21] Saffman, P.G., (), 485-614
[22] Saffman, P.G., On the spectrum and decay of random two-dimensional vorticity distributions at large Reynolds number, Stud. appl. math., 50, 377-383, (1971) · Zbl 0237.76029
[23] Seyler, C.E.; Salu, Y.; Montgomery, D.; Knorr, G., Two-dimensional turbulence in inviscid fluids or guiding center plasmas, Phys. fluids, 18, 803-813, (1975) · Zbl 0346.76043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.