×

zbMATH — the first resource for mathematics

Null Lagrangians, weak continuity, and variational problems of arbitrary order. (English) Zbl 0459.35020

MSC:
35G20 Nonlinear higher-order PDEs
49J20 Existence theories for optimal control problems involving partial differential equations
74B99 Elastic materials
32T99 Pseudoconvex domains
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Antman, S.S, The theory of rods, (), 641-703
[2] Atkinson, C; Leppington, F.G, The effect of couple stresses on the tip of a crack, Internat. J. solids structures, 13, 1103-1122, (1977) · Zbl 0368.73083
[3] Ball, J.M, Convexity conditions and existence theorems in nonlinear elasticity, Arch. rat. mech. anal., 63, 337-403, (1977) · Zbl 0368.73040
[4] Ball, J.M, Constitutive inequalities and existence theorems in nonlinear elastostatics, () · Zbl 0377.73043
[5] Ball, J.M, On the calculus of variations and sequentially weakly continuous maps, (), 13-25 · Zbl 0348.49004
[6] Ball, J.M, Strict convexity, strong ellipticity, and regularity in the calculus of variations, (), 501-513 · Zbl 0451.35028
[7] {\scJ. M. Ball}, Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Royal Soc. Edinburgh, A, in press. · Zbl 0478.46032
[8] Berkovitz, L.D, Lower semicontinuity of integral functionals, Trans. amer. math. soc., 192, 51-57, (1974) · Zbl 0294.49001
[9] Busemann, H; Ewald, G; Shephard, G.C, Convex bodies and convexity on grassman cones, I-IV, Math. ann., 151, 1-41, (1963) · Zbl 0112.37301
[10] Cesari, L, A necessary and sufficient condition for lower semicontinuity, Bull. amer. math. soc., 80, 467-472, (1974) · Zbl 0287.49003
[11] Cesari, L, Lower semicontinuity and lower closure theorems without seminormality conditions, Ann. mat. pura. appl., 98, 381-397, (1974) · Zbl 0281.49006
[12] Dafermos, C.M, Disinclinations in liquid crystals, Quart. J. applied math. Oxford, 23, S49-S64, (1970)
[13] de Franchis, M, La più generale funzione d’invarianza per criteri sufficienti di minimo con condizioni di Dirichlet per integrali pluridimensionali del primo ordine dipendenti da un vettore a più componenti, Atti accad. naz. lincei rend. cl. sci. fis. mat. natur., 37, 8, 129-140, (1964) · Zbl 0128.10004
[14] Edelen, D.G.B, The null set of the Euler-Lagrange operator, Arch. rat. mech. anal., 11, 117-121, (1962) · Zbl 0125.33002
[15] Edelen, D.G.B, Non local variations and local invariance of fields, () · Zbl 0194.42401
[16] Eisen, G, A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals, Manuscripta math., 27, 73-79, (1979) · Zbl 0404.28004
[17] Ekeland, I; Témam, R, Analyse convexe et problèmes variationnels, (1974), Dunod, Gauthier-Villars Paris · Zbl 0281.49001
[18] Ericksen, J.L, Equilibrium theory of liquid crystals, () · Zbl 0105.23403
[19] Ericksen, J.L, Nilpotent energies in liquid crystal theory, Arch. rat. mech. anal., 10, 189-196, (1962) · Zbl 0109.23002
[20] Ericksen, J.L, Special topics in elastostatics, () · Zbl 0475.73017
[21] Gel’fand, I.M; Dikii, L.A, Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equation, Russian math. surveys, 30, 77-113, (1975) · Zbl 0334.58007
[22] Gurtin, M.E; Murdoch, A.I; Gurtin, M.E; Murdoch, A.I, Addendum, Arch. rat. mech. anal., Arch. rat. mech. anal., 59, 389-390, (1975)
[23] Gurtin, M.E; Murdoch, A.I, Surface stress in solids, Internat. J. solids structures, 14, 431-440, (1978) · Zbl 0377.73001
[24] Jacobsen, N, ()
[25] Landers, A.W, Invariant multiple integrals in the calculus of variations, (), 184-189
[26] Lawruk, B; Tulczyjew, W.M, Criteria for partial differential equations to be Euler-Lagrange equations, J. differential equations, 24, 211-225, (1977) · Zbl 0366.35026
[27] Meyers, N.G, Quasi-convexity and lower semicontinuity of multiple variational integrals of any order, Trans. amer. math. soc., 119, 225-249, (1965) · Zbl 0166.38501
[28] Morrey, C.B, Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. math., 2, 25-53, (1952) · Zbl 0046.10803
[29] Morrey, C.B, Multiple integrals in the calculus of variations, (1966), Springer Berlin · Zbl 0142.38701
[30] Mount, K.R, A remark on determinantal loci, J. London math. soc., 42, 595-598, (1967) · Zbl 0171.00401
[31] Murat, F, Compacité par compensation, Ann. scuolo norm. sup. Pisa. ser. IV, 5, 489-507, (1978) · Zbl 0399.46022
[32] Murat, F, Compacité par compensation II, (), 245-256 · Zbl 0427.35008
[33] {\scF. Murat}, Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant, Ann. Scuola Norm. Sup. Pisa, to appear.
[34] Northcott, D.G, Some remarks on the theory of ideals defined by matrices, Quart. J. math. Oxford, 14, 193-204, (1963) · Zbl 0116.02504
[35] Olver, P.J; Shakiban, C, A resolution of the Euler operator I, (), 223-229 · Zbl 0395.49002
[36] Reshetnyak, Y.G, On the stability of conformal mappings in multidimensional spaces, Sibirskii math., 8, 91-114, (1967)
[37] Reshetnyak, Y.G, Stability theorems for mappings with bounded excursion, Sibirskii math., 9, 667-684, (1968)
[38] Rund, H, The Hamilton-Jacobi theory in the calculus of variations, (1966), Van Nostrand London · Zbl 0141.10602
[39] Rund, H, Integral formulae associated with the Euler-Lagrange operators of multiple integral problems in the calculus of variations, Aequationes math., 11, 212-229, (1974) · Zbl 0293.49001
[40] Shakiban, C, The Euler operator in the formal calculus of variations, ()
[41] Tartar, L, Une nouvelle méthode de résolution d’équations aux dérivées partielles nonlinéaires, (), 228-241, No. 665
[42] Tartar, L, Compensated compactness and partial differential equations, () · Zbl 0437.35004
[43] Toupin, R.A, Theories of elasticity with couple-stress, Arch. rat. mech. anal., 17, 85-112, (1964) · Zbl 0131.22001
[44] Toupin, R.A; Gazis, D, Surface effects and initial stress in continuum and lattice models of elastic crystals, (), 597-606
[45] Hodge, W.V.D; Pedoe, D, ()
[46] {\scP. J. Olver}, Hyperjacobians, differential hyperforms and weak solutions to variational problems, preprint.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.