×

zbMATH — the first resource for mathematics

Some kinds of modal completeness. (English) Zbl 0459.03008

MSC:
03B45 Modal logic (including the logic of norms)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. F. A. K. van Benthem, Modal Correspondence Theory, dissertation, Department of Mathematics, University of Amsterdam, 1976.
[2] ?, Modal Logic as Second-Order Logic, report 77-04, 1977, Department of Mathematics, University of Amsterdam; expanded version to appear in Studia Logica Selected Topics Library 1980.
[3] ?, Canonical modal logics and ultrafilter extensions, The Journal of Symbolic Logic 44 (1979), pp. 1-8. · Zbl 0405.03011 · doi:10.2307/2273696
[4] ?, Two simple incomplete modal logics, Theoria 44 (1978), pp. 25-37. · Zbl 0405.03010
[5] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam, 1973.
[6] K. Fine, The logics containing S4.3, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 17 (1971), pp. 371-376. · Zbl 0228.02011 · doi:10.1002/malq.19710170141
[7] ?, An incomplete logic containing S4, Theoria 40 (1974), pp. 23-29. · Zbl 0287.02011 · doi:10.1111/j.1755-2567.1974.tb00076.x
[8] ?, Some connections between elementary and modal logic, in: Proceedings of the Third Scandinavian Logic Symposium, Uppsala 1973, North-Holland, Amsterdam 1975, pp. 15-31.
[9] R. I. Goldblatt, Metamathematics of modal logic, Reports on Mathematical Logic 6 (1976), pp. 41-77, and 7, pp. 21-52. · Zbl 0356.02016
[10] R. I. Goldblatt and S. K. Thomason, Axiomatic classes in propositional modal logic, in: Algebra and Logic, Springer Lecture Notes in Mathematics 450, Berlin (1974), pp. 163-173. · Zbl 0325.02012
[11] R. Harrop, On the existence of finite models and decision procedures for propositional calculi, Proceedings of the Cambridge Philosophical Society 54 (1958), pp. 1-13. · Zbl 0080.00803 · doi:10.1017/S0305004100033120
[12] S.A. Kripke, A completensesz theorem in modal logic, The Journal of Symbolic Logic 24 (1959), pp. 1-14. · Zbl 0091.00902 · doi:10.2307/2964568
[13] E. J. Lemmon and D. Scott, An Introduction to Modal Logic, Blackwell, Oxford 1966, 1977, (Edited by K. Segerberg.) · Zbl 0147.24805
[14] D. C. Makinson, A normal calculus between T and S4 without the finite model property, The Journal of Symbolic Logic 34 (1969), pp. 35-38. · Zbl 0184.00806 · doi:10.2307/2270978
[15] M. Mortimer, Some results in modal model theory, The Journal of Symbolic Logic 39 (1974), pp. 496-508. · Zbl 0306.02021 · doi:10.2307/2272892
[16] H. Sahlqvist, Completeness and correspondence in the First and Second Order semantics for modal logic, in: Proceedings of the Third Scandinavian Logic Symposium, Uppsala 1973, North-Holland, Amsterdam 1975, pp. 110-143.
[17] K. Segerberg, An Essay in Classical Modal Logic, Department of Philosophy, University of Uppsala, 1971. · Zbl 0311.02028
[18] S. K. Thomason, An incompleteness theorem in modal logic, Theoria 40 (1974), pp. 30-34. · Zbl 0287.02012 · doi:10.1111/j.1755-2567.1974.tb00077.x
[19] ?, Reduction of second-order logic to modal logic, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 21 (1975), pp. 107-114. · Zbl 0317.02011 · doi:10.1002/malq.19750210114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.