×

zbMATH — the first resource for mathematics

Heterogeneity in disease-transmission modeling. (English) Zbl 0454.92020

MSC:
92D25 Population dynamics (general)
92C50 Medical applications (general)
15A18 Eigenvalues, singular values, and eigenvectors
PDF BibTeX Cite
Full Text: DOI
References:
[1] Brauer, F.; Nohel, J.A., The qualitative theory of ordinary differential equations, (1969), Benjamin · Zbl 0179.13202
[2] Brogger, S., Systems analysis in tuberculosis control: a model, Amer. rev. resp. dis., 95, 419-434, (1967)
[3] Constable, G.M., The problems of V.D. modelling, Internat. statist. inst. bull., 46, 256-263, (1975), (Book 2)
[4] K.L. Cooke and J.L. Kaplan, A periodicity threshold theorem for epidemics and population growth, to appear. · Zbl 0341.92012
[5] Cooke, K.L.; Yorke, J.A., Some equations modelling growth processes and gonorrhea epidemics, Math. biosci., 16, 75-101, (1973) · Zbl 0251.92011
[6] Cooke, K.L., A discrete-time epidemic model with classes of infectives and susceptibles, Theoret. population biology, 7, 175-196, (1975) · Zbl 0295.92016
[7] Elveback, L.; Fox, J.P.; Ackerman, E.; Ludwig, D.; Cooke, K.L., Stochastic simulation models for two immunization problems, Proceedings of the SIAMS conference on epidemiology, (1975)
[8] Hethcote, H.W., Asymptotic behavior and stability in epidemic models, (), Victoria Conference · Zbl 0212.52104
[9] Hethcote, H.W., Qualitative analyses of communicable disease models, Math. biosci., 28, 335-356, (1976) · Zbl 0326.92017
[10] Hethcote, H.W., An immunization model for a heterogeneous population, Theoret. population biology, (Dec. 1978)
[11] H.W. Hethcote and J.A. Yorke, Dynamics and control of the transmission of gonorrhea: mathematical theories, to appear. · Zbl 0542.92026
[12] Lajmanovich, A.; Yorke, J.A., A deterministic model for gonorrhea in a nonhomogeneous population, Math. biosci., 28, 221-236, (1976) · Zbl 0344.92016
[13] Lotka, A.J., Contribution to the analysis of malaria epidemiology, Amer. J. hygiene, 3, (1923), Jan. Suppl.
[14] Nagumo, M., Über die lage der intergralkurven gewohnlicher differentialgleichungen, Proc. phys.-math. soc. Japan, 24, 551-559, (1942) · Zbl 0061.17204
[15] Nold, A., The infectee number for communicable diseases, Math. biosci., 46, 131-139, (1979)
[16] Ortega, J.M., Numerical analysis, (1972), Academic
[17] Revelle, C.S.; Lynn, W.R.; Feldmann, F., Mathematical models for the economic allocation of tubercolosis control activities in developing nations, Amer. rev. resp. dis., 96, 893-909, (1967)
[18] Reynolds, G.H., A control model for gonorrhea, () · Zbl 0351.92026
[19] Reynolds, G.H.; Chan, Y.K., A control model for gonorrhea, Internat. statist. inst. bull., 46, 264-279, (1975), (Book 2)
[20] Todd, J., Survey of numerical analysis, (1962), McGraw-Hill · Zbl 0101.33601
[21] Varga, R., Matrix iterative analysis, (1962), Prentice-Hall · Zbl 0133.08602
[22] Watson, R.K., On a epidemic in a stratified population, J. appl. probability, 9, 659-666, (1972) · Zbl 0245.92019
[23] Yorke, J.A., Invariance for ordinary differential equations, Math. systems theory, 1, 353-372, (1967) · Zbl 0155.14201
[24] Yorke, J.A.; Hethcote, H.W.; Nold, A., Dynamics and control of the transmission of gonorrhea, Sexually transmitted diseases, 5, 51-56, (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.