×

zbMATH — the first resource for mathematics

Staggered transient analysis procedures for coupled mechanical systems: Formulation. (English) Zbl 0453.73091

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Siljak, D.D., Large scale dynamic systems: stability and structure, () · Zbl 0344.93003
[2] ()
[3] Sage, A.P., Methodology for large scale systems, (1977), McGraw-Hill New York · Zbl 0395.93005
[4] Belytschko, T.; Mullen, R., Mesh partitions of explicit-implicit time integration, (), 673-690
[5] Belytschko, T.; Mullen, R., Stability of explicit-implicit mesh partitions in time integration, Int. J. numer. meths. eng., 12, 1575-1586, (1978) · Zbl 0398.65059
[6] Park, K.C.; Felippa, C.A.; DeRuntz, J.A., Stabilization of staggered solution procedures for fluid-structure interaction analysis, (), 94-124 · Zbl 0389.76002
[7] Hughes, T.J.R.; Liu, W.K., Implicit-explicit finite elements in transient analysis: stability theory, J. appl. mech., 45, 371-374, (1978) · Zbl 0392.73076
[8] Hughes, T.J.R.; Liu, W.K., Implicit-explicit finite elements in transient analysis: implementation and numerical examples, J. appl. mech., 45, 375-378, (1978) · Zbl 0392.73077
[9] Belytschko, T.; Yen, H.J.; Mullen, R., Mixed methods for time integration, Comp. meths. appl. mech. eng., Comp. meths. appl. mech. eng., 18, 259-275, (1979) · Zbl 0403.73002
[10] Park, K.C., Partitioned transient analysis procedures for coupled-field problems: stability analysis, J. appl. mech., (1980), to appear. · Zbl 0437.73072
[11] Park, K.C.; Felippa, C.A., Partitioned transient analysis procedures for coupled-field problems: accuracy analysis, J. appl. mech., (1980), to appear. · Zbl 0462.73066
[12] DeRuntz, J.A.; Geers, T.L.; Felippa, C.A., The underwater shock analysis (USA) code: a reference manual, ()
[13] Jensen, P.S., Transient analysis of structures by stiffly stable methods, Computers & structures, 4, 615-626, (1974)
[14] Henrici, P., Discrete variable methods in ordinary differential equations, () · Zbl 0112.34901
[15] Gear, C.W., Numerical initial value problems in ordinary differential equations, (1971), Prentice-Hall Englewood Cliffs, NJ · Zbl 0217.21701
[16] Dahlquist, G.; Björk, Å., Numerical methods, (1975), Prentice-Hall Englewood Cliffs, NJ
[17] Felippa, C.A.; Park, K.C., Computational aspects of time integration procedures in structural dynamics, J. appl. mech., 45, 595-602, (1978), Part I: Implementation · Zbl 0393.73090
[18] Park, K.C.; Felippa, C.A., Computational aspects of time integration procedures in structural dynamics, J. appl. mech., 45, 603-611, (1978), Part II: Error propagation · Zbl 0393.73091
[19] Felippa, C.A.; Park, K.C., Direct time integration methods in nonlinear structural dynamics, Comp. meths. appl. mech. eng., Comp. meths. appl. mech. eng., 18, 277-313, (1979) · Zbl 0403.73032
[20] Henrici, P., Applied and computational complex analysis 2, (1977), Wiley New York · Zbl 0377.30002
[21] Jury, E.I., Theory and application of the z transform method, (1964), Wiley New York
[22] Ogata, K., Modern control engineering, (1970), Prentice-Hall Englewood Cliffs, NJ
[23] Jury, E.I.; Blanchard, J., On the roots of a real polynomial inside the unit circle and a stability criterion for linear discrete systems, (), Issue No. 425
[24] Henrici, P., Applied and computational complex analysis 1, (1974), Wiley New York
[25] Felippa, C.A.; Yee, H.C.; Park, K.C., Stability of staggered transient analysis procedures for coupled mechanical systems, () · Zbl 0453.73091
[26] Park, K.C., Evaluating time integration methods for nonlinear dynamic analysis, (), 35-58
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.