zbMATH — the first resource for mathematics

An application of network theory to the solution of implicit Navier- Stokes difference equations. (English) Zbl 0452.76024

76D05 Navier-Stokes equations for incompressible viscous fluids
65Z05 Applications to the sciences
65N06 Finite difference methods for boundary value problems involving PDEs
Full Text: DOI
[1] Chorin, A.J., Math. comp., 23, 341, (1969)
[2] Jamet, P.; Lascaux, P.; Raviart, P.-A., Numer. math., 16, 93, (1970)
[3] Krzhivitski, A.; Ladyzhenskaya, O.A., Soviet phys. dokl., 11, 212, (1966), (Translation)
[4] Krzhivitski, A.; Ladyzhenskaya, O.A.; Krzhivitski, A.; Ladyzhenskaya, O.A., Boundary value problems of mathematical physics, IV, (), 105
[5] Hopf, E., Math. nachr., 4, 213, (1951)
[6] Harlow, F.H.; Weigh, F.E., Phys. fluids, 8, 2181, (1965)
[7] Berge, C.; Ghouila-Houri, A., Programming, games and transportation networks, (1965), Methuen, London
[8] Porsching, T.A., Nucl. sci. eng., 64, 177, (1977)
[9] Porsching, T.A., Numer. math., 29, 291, (1978)
[10] Ladyzhenskaya, O.A., The mathematical theory of viscous incompressible flow, (1969), Gordon & Breach New York · Zbl 0184.52603
[11] Amit, R.; Cullen, C.; Hall, C.; Mesina, G.; Porsch1ng, T., ()
[12] NASA Langley Staff, Numerical studies of incompressible viscous flow in a driven cavity, ()
[13] Tuann, S.; Olson, M.D., J. comput. phys., 29, 1, (1978)
[14] Irons, B., Int. J. numer. meth. eng., 2, 5, (1970)
[15] Burggraf, O.R., J. fluid mech., 24, 113, (1966)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.