×

zbMATH — the first resource for mathematics

Unconditional and symmetric sets in \(n\)-dimensional normed spaces. (English) Zbl 0445.46011

MSC:
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
26D20 Other analytical inequalities
46B25 Classical Banach spaces in the general theory
46B20 Geometry and structure of normed linear spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] W. Davis and B. Maurey,The distance of a symmetric space from some l p space, Proc. Intern. Conf. on Operator Algebras, Ideals, and their Applications in Theoretical Physics (Leipzig, 1977), Teubner, Leipzig, 1978, pp. 58–68.
[2] T. Figièl, J. Lindenstrauss and V. Milman,The dimension of almost spherical sections of convex bodies, Acts Math.139 (1977), 53–94. · Zbl 0375.52002
[3] M. Gromov and V. D. Milman,A topological application of the isoperimetric inequality, submitted. · Zbl 0522.53039
[4] J. P. Kahane,Some Random Series of Functions, Heath Math. Monographs, 1968. · Zbl 0192.53801
[5] I. L. Krivine,Sous-espaces de dimension fini des espaces de Banach reticulés, Ann. of Math.104 (1976), 1–29. · Zbl 0329.46008
[6] P. Levy,Ptoblèmes concrets d’analyse fonctionelle, Gautheir Villard, Paris, 1951.
[7] B. Maurey,Construction de suites symétriques, C. R. Acad. Sci. Paris Ser. A-B288 (1979), A679–681. · Zbl 0398.46019
[8] B. Maurey and G. Pisier,Series de variables aléatories vectorièlles indépendantes et propriététs géométriques des espaces de Banach, Studia Math.58 (1976), 45–90. · Zbl 0344.47014
[9] V. D. Milman,A new proof of the theorem of A. Dvoretzky on sections of convex bodies, Functional Anal. Appl.5 (1971), 28–37.
[10] V. D. Milman and M. Sharir,A new proof of the Maurey-Pisier theorem, Israel J. Math.33 (1979), 73–87. · Zbl 0418.46010
[11] L. Tzafriri,On Banach spaces with unconditional bases, Israel J. Math.17 (1974), 84–93. · Zbl 0281.46013
[12] D. L. Wang and P. Wang,Extremal configurations on a discrete torus and a generalization of the generalized Macaulay theorem, Siam J. Appl. Math.33 (1977), 55–59. · Zbl 0362.05048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.