×

zbMATH — the first resource for mathematics

Preturbulence: A regime observed in a fluid flow model of Lorenz. (English) Zbl 0443.76059

MSC:
76F99 Turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kaplan, J.L., Yorke, J.A.: The onset of chaos in a fluid flow model of Lorenz. Proc. NY Acad. Sci. (to appear) · Zbl 0445.58017
[2] Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci.20, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[3] Guckenheimer, J.: A strange attractor, in the Hopfbifurcation theorem and its applications. Marsden, J.E., McCracken, M. (ed.), pp. 368-381. Berlin, Heidelberg, New York: Springer 1976
[4] Williams, R.F.: The structure of Lorenz attractors. Preprint (1977) · Zbl 0363.58005
[5] McLaughlin, J.B., Martin, P.C.: Transition to turbulence in a statistically stressed fluid system. Phys. Rev. A12, 186-203 (1975) · doi:10.1103/PhysRevA.12.186
[6] Curry, J.H.: Transition to turbulence in finite-dimensional approximations to the Boussinesq equations. Ph. D. Thesis, University of California, Berkeley (1976)
[7] Smale, S.: A structurally stable differentiable homeomorphism with an infinite number of periodic points. Proc. Int. Symp. Nonlinear Vibrations, Vol. II (1961); Izdat. Akad. Nauk. Ukrain SSR, Kiev (1963) · Zbl 0125.11601
[8] Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc.73, 747-817 (1967) · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[9] Denjoy, A.: Sur les courbes défines par les équations différentielles à la surface du tore. J. Math. ser 9,11, 333-375 (1932) · JFM 58.1124.04
[10] Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys.20, 167-192 (1971);23, 343-344 (1971) · Zbl 0223.76041 · doi:10.1007/BF01646553
[11] Gottschalk, W.H., Hedlund, G.A.: Topological dynamics, Vol. 36 (revised ed.). Providence, R.I.: Am. Math. Soc., Colloquium Pub. 1968
[12] Nitecki, Z.: Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms. Cambridge, Mass.: M.I.T. Press 1971 · Zbl 0246.58012
[13] Robbins, K.A.: A new approach to subcritical instability and turbulent transitions in a simple dynamo. Math. Proc. Cambridge Phil. Soc.
[14] Creveling, H.F., DePaz, J.F., Baladi, J.V., Schoenhals, R.J.: Stability characteristics of a single phase free convection loop. J. Fluid Mech.67, 65-84 (1975) · Zbl 0312.76029 · doi:10.1017/S0022112075000171
[15] Marsden, J.E., McCracken, M.: The Hopf bifurcation and its applications. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0346.58007
[16] Ruelle, D.: The Lorenz attractor and the problem of turbulence. Proc. Conf. Quantum Dynamics Models and Mathematics, Bielefeld (1975) · Zbl 0325.60098
[17] Guckenheimer, J., Oster, G., Ipaktchi, A.: The dynamics of density dependent population models. J. Math. Biol.4, 101-147 (1977) · Zbl 0379.92016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.