×

zbMATH — the first resource for mathematics

The shape of axisymmetric rotating fluid. (English) Zbl 0439.35068

MSC:
35Q99 Partial differential equations of mathematical physics and other areas of application
76U05 General theory of rotating fluids
35B65 Smoothness and regularity of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Auchmuty, J.F.G, Existence of axisymetric equilibrium figures, Arch. rational mech. anal., 65, 249-261, (1977) · Zbl 0366.76083
[2] Auchmuty, J.F.G; Beals, R, Variational solutions of some nonlinear free boundary problems, Arch. rational mech. anal., 43, 255-271, (1971) · Zbl 0225.49013
[3] \scPh. Benilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation, to appear. · Zbl 1150.35406
[4] Berestycki, H; Brezis, H, Sur certains problèmes de frontière libre, C. R. acad. sci. Paris, 283, 1091-1094, (1976) · Zbl 0342.35014
[5] Caffarelli, L.A; Friedman, A, The obstacle problem for the biharmonic operator, Ann. ser. norm. sup. Pisa, 6, 4, 151-184, (1979) · Zbl 0405.31007
[6] Caffarelli, L.A; Friedman, A, The free noundary in the Thomas-Fermi atomic model, J. differential equations, 32, 335-356, (1979) · Zbl 0408.35083
[7] Chandrasekhar, S, Ellipsoidal figures of equilibrium, (1962), Yale Univ. Press New Haven, Conn · Zbl 0213.52304
[8] Fraenkel, L.E, On steady vortex rings of small cross-section in an ideal fluid, (), 29-62 · Zbl 0195.55101
[9] Fraenkel, L.E, Examples of steady vortex rings of small cross-section in an ideal fluid, J. fluid mech., 51, (1972) · Zbl 0231.76013
[10] Fraenkel, L.E; Berger, M.S, A global theory of steady vortex rings in an ideal fluid, Acta math., 132, 14-51, (1974) · Zbl 0282.76014
[11] Hardy, G.H; Littlewood, J.E; Pólya, G, Inequalities, (1934), Cambridge Univ. Press Cambridge · Zbl 0010.10703
[12] Hill, M.J.M, On a spherical vortex, Philos. trans. roy. soc. ser. A, 185, 213-245, (1894) · JFM 25.1471.01
[13] Kinderlehrer, D; Nirenberg, L, Regularity in free boundary problems, Ann. scuola norm. sup. Pisa, 4, 373-391, (1977) · Zbl 0352.35023
[14] Kinderlehrer, D; Nirenberg, L; Spruck, J, Regularity in elliptic free boundary problems, I, J. analyse math., 34, 86-119, (1978) · Zbl 0402.35045
[15] Kinderlehrer, D; Spruck, J, The shape and smoothness of stable plasma configurations, Ann. scuola norm. sup. Pisa, 5, 4, 131-148, (1978) · Zbl 0409.76095
[16] Kopal, Z, Figures of equilibrium in celestial bodies, (1960), Univ. of Wisconsin Press Madison
[17] Lieb, E.H; Simon, B, The Thomas-Fermi theory of atoms, molecules and solids, Advances in math., 23, 22-116, (1977) · Zbl 0938.81568
[18] Littman, W, A strong maximum principle for weakly L-subharmonic functions, J. math. mech., 8, 761-770, (1959) · Zbl 0090.08201
[19] Maruhn, K, Über die existenz stationärer bewegungen von wirbelringen, (), 173-176
[20] Norbury, J, A steady vortex ring close to Hill’s spherical vortex, (), 253-284 · Zbl 0256.76016
[21] Norbury, J, A family of steady vortex rings, J. fluid mech., 57, 417-431, (1973) · Zbl 0254.76018
[22] Poincaré, H, Figures TD’équilibre d’une masse fluide, (1901), Gauthier-Villars Paris
[23] Poincaré, H, Deuvres, ()
[24] Wavre, R, Figures planétaires et géodésie, (1932), Gauthier-Villars Paris · JFM 58.1300.03
[25] Temam, R, A nonlinear eigenvalue problem: the shape at equilibrium of a confined plasma, Arch. rational mech. anal., 60, 51-73, (1975) · Zbl 0328.35069
[26] Temam, R, Remarks on a free boundary value problem arising in plasma physics, Comm. PDE, 2, 563-585, (1977) · Zbl 0355.35023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.