zbMATH — the first resource for mathematics

A high-order accurate numerical algorithm for three-dimensional transport prediction. (English) Zbl 0438.76068

76R99 Diffusion and convection
82C70 Transport processes in time-dependent statistical mechanics
86A05 Hydrology, hydrography, oceanography
65D07 Numerical computation using splines
Full Text: DOI
[1] Egan, B.A.; Mahoney, J.R., Numerical modeling of advection and diffusion of urban area source pollutants, J. appl. meteor., 11, 312, (1972)
[2] Pedersen, L.B.; Prahm, L.P., A method for numerical solution of the advection equation, Tellus, 26, 594, (1974)
[3] Fischer, K., Subgrid numerical representations and their improvement of convective difference schemes, (), 368
[4] Pepper, D.W.; Long, P.E., A comparison of results using second-order moments with and without width correction to solve the advection equation, J. appl. meteor., 17, 228, (1978)
[5] Yanenko, N.N., The method of fractional steps. solution of problems of mathematical physics in several variables, (1971), Springer-Verlag Heidelberg, Germany · Zbl 0209.47103
[6] Price, G.V.; MacPherson, A.K., A numerical weather forecasting method using cubic splines on a variable mesh, J. appl. meteor., 12, 1102, (1973)
[7] Rubin, S.G.; Graves, R.A., Viscous flow solution with a cubic spline approximation, Comp. and fluids, 3, 1, (1975) · Zbl 0347.76020
[8] Ahlberg, J.H.; Nilson, E.N.; Walsh, J.L., The theory of splines and their applications, (), 284 · Zbl 0158.15901
[9] Fyfe, D.J., The use of cubic splines in the solution of two-point boundary valve problems, Comp. J., 12, 2, 188, (1969) · Zbl 0185.41404
[10] Reynolds, S.D.; Roth, P.M.; Seinfeld, J.H., Mathematical modeling of photochemical air pollution—I: formulation of the model, Atmos. environ., 7, 1033, (1973)
[11] Calder, K.L., The numerical solution of atmospheric diffusion equation by finite difference methods, (), 130
[12] K. S. Rao, 1976: Personal Communication.
[13] Dickerson, M.H., A three-dimensional mass-consistent atmospheric flux model for region with complex topography, ()
[14] Sherman, C.A., A mass-consistent model for wind fields over complex terrain, (), 35
[15] Shir, C.C.; Shieh, L.J., A generalized urban air pollution model and its application to the study of SO_2 distribution in the St. Louis metropolitan area, J. appl. meteor., 13, 185, (1974)
[16] Pasquill, F., Atmospheric diffusion: the dispersion of windborne material from industrial & other sources, (1974), John Wiley and Sons New York
[17] Tennekes, H.; Lumley, J.L., A first course on turbulence, (1972), MIT Press Cambridge, Massachusetts · Zbl 0285.76018
[18] Yu, T., A comparative study on parameterization of vertical turbulent exchange process, Mon. weather rev., 105, 57, (1977)
[19] O’Brien, J.J., A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer, J. atmos. sci., 27, 1213, (1970)
[20] Long, P.E.; Shaffer, W.A., Some physical and numerical aspects of boundary layer modeling, ()
[21] Businger, J.A.; Wyngaard, J.C.; Izumi, Y.; Bradley, E.F., Flux-profile relationships in the atmospheric surface layer, J. atmos. sci., 28, 181, (1971)
[22] Pepper, D.W.; Kern, C.D.; Long, P.E., Modeling the dispersion of atmospheric pollutants using cubic splines and chapeau functions, Atmos. environ., 3, 223, (1979)
[23] Lange, R., ADPIC: A three-dimensional computer code for the study of pollutant dispersal and deposition under complex conditions, ()
[24] Crawford, T.V., A computer program for calculating the atmospheric dispersion of large clouds, ()
[25] Long, P.E.; Pepper, D.W., A comparison of six numerical schemes for calculating the advection of atmospheric pollution, ()
[26] Baker, A.J.; Soliman, M.O.; Pepper, D.W., A time split finite element algorithm for environmental release prediction, (), 4.53
[27] Chawla, T.C.; Leaf, G.; Chen, W.L.; Grolmes, M.A., The application of collocation method using Hermite cubic splines to nonlinear transient one-dimensional heat conduction problems, Trans. ASME 97C, 4, 562, (1975)
[28] Rubin, S.G.; Khosla, P.K., Higher-order numerical solutions using cubic splines, Aiaa j., 14, 851, (1976) · Zbl 0344.65048
[29] Purnell, D.K., Solution of the advection equation by upstream interpolation with a cubic spline, Mon. weather rev., 104, 42, (1976)
[30] Hsu, C.C., The use of splines for the solution of boundary layer equations, (), 129
[31] Price, H.S.; Cavendish, J.C.; Varga, R.S., Numerical methods of high-order accuracy for diffusion-convection equations, Soc. pet. eng. J., 243, 3, 293, (1968)
[32] Stone, H.L., Iterative solution of implicit approximations of multidimensional partial differential equations, SIAM J. numerical anal., 5, 530, (1968) · Zbl 0197.13304
[33] Bozeman, J.D.; Dalton, C., Numerical study of viscous flow in a cavity, J. comp. phys., 12, 348, (1973) · Zbl 0261.76024
[34] Jacobs, D.A., A corrected upwind differencing scheme using a strongly implicit solution procedure, (1973), Pentech Press London, England
[35] Lin, C.L.; Pepper, D.W.; Lee, S.C., Numerical methods for separated flow solutions around a circular cylinder, Aiaa j., 14, 900, (1976) · Zbl 0331.76017
[36] Pepper, D.W.; Harris, S.D.; Pepper, D.W.; Harris, S.D., Numerical simulation of natural convection in closed containers by a fully implicit method, J. fluids engr., J. fluids engr., 99, 1, 4, (1977)
[37] Pepper, D.W.; Kern, C.D., Modeling of two-dimensional mesoscale concentrations using a strongly implicit procedure, ()
[38] Weinstein, H.G.; Stone, H.L.; Kwan, T.V., Iterative procedure for solution of systems of parabolic and elliptic equations in three dimensions, Indus. and engr. chem. fund., 8, 281, (1969)
[39] Pepper, D.W.; Harris, S.D., Numerical solution of three-dimensional natural convection by the strongly implicit procedure, Asme, 78-wa/ht-10, (1978)
[40] Honeck, H.C., The JOSHUA system, (), Available through NTIS
[41] Fleming, R.J., AFGWC fine-mesh upper air analysis model, (), AD 710203
[42] Christensen, O.; Prahm, L.P., A pseudospectral model for dispersion of atmospheric pollutants, J. appl. meteor., 15, 284, (1976)
[43] Slade, D., Meteorology and atomic energy, (), Available through NTIS TID-24190
[44] Kao, S.K., A model for turbulent diffusion over terrain, J. atmos. sci., 33, 157, (1976)
[45] Smith, M.E., Recommended guide for the prediction of the dispersion of airborne efficients, (1973), ASME NY
[46] Pendergast, M.M., Model evaluation for travel distances 30-140 km, (), 648
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.