×

zbMATH — the first resource for mathematics

Uniformly continuous functionals on the Fourier algebra of any locally compact group. (English) Zbl 0436.43007

MSC:
43A60 Almost periodic functions on groups and semigroups and their generalizations (recurrent functions, distal functions, etc.); almost automorphic functions
43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
22D05 General properties and structure of locally compact groups
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
43A35 Positive definite functions on groups, semigroups, etc.
22D15 Group algebras of locally compact groups
43A07 Means on groups, semigroups, etc.; amenable groups
42A45 Multipliers in one variable harmonic analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Richard Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839 – 848. · Zbl 0044.32601
[2] Charles A. Akemann, Some mapping properties of the group algebras of a compact group, Pacific J. Math. 22 (1967), 1 – 8. · Zbl 0158.14205
[3] Charles A. Akemann and Martin E. Walter, Non-abelian Pontriagin duality, Duke Math. J. 39 (1972), 451 – 463. · Zbl 0243.43005
[4] Philip C. Curtis Jr. and Alessandro Figà-Talamanca, Factorization theorems for Banach algebras, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) Scott-Foresman, Chicago, Ill., 1966, pp. 169 – 185.
[5] Jacques Dixmier, Les \?*-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). · Zbl 0288.46055
[6] N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958. MR 22 #8302. · Zbl 0084.10402
[7] Charles F. Dunkl and Donald E. Ramirez, Weakly almost periodic functionals carried by hypercosets, Trans. Amer. Math. Soc. 164 (1972), 427 – 434. · Zbl 0211.15601
[8] Edward G. Effros, Order ideals in a \?*-algebra and its dual, Duke Math. J. 30 (1963), 391 – 411. · Zbl 0117.09703
[9] John Ernest, A new group algebra for locally compact groups, Amer. J. Math. 86 (1964), 467 – 492. · Zbl 0211.15402 · doi:10.2307/2373020 · doi.org
[10] Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181 – 236 (French). · Zbl 0169.46403
[11] G. I. Gaudry, Quasimeasures and multiplier problems, Doctoral dissertation, Australian National Univ., 1966, Canberra, Australia. · Zbl 0156.14601
[12] Edmond E. Granirer, Weakly almost periodic and uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 189 (1974), 371 – 382. · Zbl 0292.43015
[13] Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969. · Zbl 0174.19001
[14] E. Hewitt and K. Ross, Abstract harmonic analysis. I, Springer-Verlag, Berlin; Academic Press, New York, 1963. MR 28 # 158. · Zbl 0115.10603
[15] -, Abstract harmonic analysis. II, Springer-Verlag, Berlin and New York, 1970. MR 41 #7378; erratum, MR 42, p. 1825.
[16] Gregory A. Hively, The representation of norm-continuous multipliers on \?^\infty -spaces, Trans. Amer. Math. Soc. 184 (1973), 343 – 353. · Zbl 0256.43005
[17] J. L. Kelley and Isaac Namioka, Linear topological spaces, With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. · Zbl 0115.09902
[18] J. W. Kitchen Jr., The almost periodic measures on a compact abelian group, Monatsh. Math. 72 (1968), 217 – 219. · Zbl 0205.04402 · doi:10.1007/BF01362546 · doi.org
[19] A. T. Lau, Operators which commute with convolutions on subspaces of \( {L_\infty }(G)\), Colloq. Math. (to appear). · Zbl 0411.47025
[20] Anthony To Ming Lau, Closed convex invariant subsets of \?_\?(\?), Trans. Amer. Math. Soc. 232 (1977), 131 – 142. · Zbl 0363.43002
[21] Horst Leptin, Sur l’algèbre de Fourier d’un groupe localement compact, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A1180 – A1182 (French). · Zbl 0169.46501
[22] Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. · Zbl 0052.11701
[23] Kelly McKennon, Multipliers, positive functionals, positive-definite functions, and Fourier-Stieltjes transforms, American Mathematical Society, Providence, R. I., 1971. Memoirs of the American Mathematical Society, No. 111. · Zbl 0214.13304
[24] D. A. Raĭkov, On various types of convergence of positive definite functions, Doklady Akad. Nauk SSSR (N.S.) 58 (1947), 1279 – 1282 (Russian).
[25] P. F. Renaud, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc. 170 (1972), 285 – 291. · Zbl 0226.46065
[26] Shôichirô Sakai, \?*-algebras and \?*-algebras, Springer-Verlag, New York-Heidelberg, 1971. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60. · Zbl 0233.46074
[27] Shôichirô Sakai, Weakly compact operators on operator algebras, Pacific J. Math. 14 (1964), 659 – 664. · Zbl 0135.35803
[28] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251 – 261. · Zbl 0049.35702
[29] James C. S. Wong, Topologically stationary locally compact groups and amenability, Trans. Amer. Math. Soc. 144 (1969), 351 – 363. · Zbl 0202.02802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.