Primal hybrid finite element methods for 4th order elliptic equations. (English) Zbl 0435.65092


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74K20 Plates
31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
35J40 Boundary value problems for higher-order elliptic equations
Full Text: DOI


[1] I. Babuska, J. T. Oden, J. K. Lee,Mixed-Hybrid finite element approximations of second-order elliptic boundary-value problems, Comput. Methods Appl. Mech. Engrg.11, (1977), 175–206. · Zbl 0382.65056
[2] J. H. Bramble, S. R. Hilbert,Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math.16, (1971), 362–369. · Zbl 0214.41405
[3] F. Brezzi,On the existence uniqueness and approximation of saddle point problems arising from Lagrangian multipliers, R. A. I. R. O. 8-R2 (1974), 129–151. · Zbl 0338.90047
[4] F. Brezzi,Sur une méthode hybride pour l’approximation du problème de la torsion d’une barre élastique, Rend. Ist. Lombardo Sci. Lett A,108, (1974), 274–300. · Zbl 0351.73081
[5] F Brezzi, L. D. Marini,On the numerical solution of plate bending problems by hybrid methods, R.A.I.R.O., R3, (1975), 5–50. · Zbl 0322.73048
[6] F. Brezzi, P. A. Raviart,Mixed finite element methods for 4-th order elliptic equations, Report 9 École Polytechnique (1976). · Zbl 0434.65085
[7] J. Cea,Approximation variationnelle–Convergence des Eléments finis–un Test, Journées Eléments Finis, Rennes (1976).
[8] P.G. Ciarlet,Numerical Analysis of the finite element method, Séminiaire de Math. Superieure, Univ. de Montréal (1975). · Zbl 0353.73067
[9] P. G. Ciarlet,The Finie Element Method for elliptic problems (1978), North-Holland. · Zbl 0383.65058
[10] P. G. Ciarlet, P. A. Raviart,General Lagrange and Hermite Interpolation in R n with applications to Finite Element Methods, Arch. Rational Mech., Anal.46 (1972), 177–199. · Zbl 0243.41004
[11] M. Crouzeix, P. A. Raviart,Conforming and Non Conforming finite element method for solving the stationary Stokes Equations, R.A.I.R.O., R3, (1973), 33–76. · Zbl 0302.65087
[12] I. Ekeland, R. Temam Analyse convexe et problèmes variationnels (1974), Dunod, Paris. · Zbl 0281.49001
[13] G. Fichera,Esistenza del minimo in un classico problema di calcolo delle variazioni, Rend. Acc. Naz. Lincei, S VIII, V XI, 1–2, (1951), 34–39. · Zbl 0054.04303
[14] B. Fraeijs de Veubeke,Displacement and Equilibrium Models in the Finite Element Methods, Stress Analysis (1965), (Zeinkievicz and Holister ed), Wiley London. · Zbl 0359.73007
[15] B. Fraeijs de Veubeke,Variational Principles and the Patch-Test, Internat. J. Numer. Methods Engrg.8 (1974), 783–801. · Zbl 0284.73043
[16] J. Haslinger, I. Hlavacek,Convergence of a Finite Element Method based on the dual Variational formulation, Preprint, Praga University (1975). · Zbl 0321.65060
[17] B. M. Irons, A. Razzaque Experience with patch test for convergence of finite elements, the Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (1972), (A.K. Aziz, Ed.) Academic Press, New York, 557–587.
[18] C. Johnson,Convergence of another mixed finite element method for plate bending problems, Report N. 27, Department of Mathematics, Chalmers Institute of Technology and the University of Goteborg, 1972.
[19] C. Johnson,On the convergence of some mixed finite element methods in plate bending problems, Numer. Math., (1),21, (1973), 43–62. · Zbl 0264.65070
[20] L. D. Landau, E. Lifshitz Theory of Elasticity, (1959), Pergamon Press, London.
[21] P. Lascaux, P. Lesaint,Some nonconforming finite elements for the plate bending problem, R.A.I.R.O., R 4 (1975), 9–54. · Zbl 0319.73042
[22] J. L. Lions, E. Magenes Non homogeneous boundary value problems and applications, I, II (1970), Grund. B. 181–182, Springer Berlin.
[23] J. T. Oden,Some contributions to the mathematical theory of mixed finite element approximations, Tokio Seminar on Finite Elements, (1973). · Zbl 0374.65060
[24] T. H. H. Pian,Hybrid Models, Int. Symp. on Numerical and Computer Methods in Structural Mechanics, Urbana, Illinois, Sept. 1971.
[25] T. H. H. Pian, P. Tong,A variational principle and the convergence of a finite element method based on assumed stress distribution, Internat. J. Solids and Structures5, (1969), 463–472. · Zbl 0167.52805
[26] P A. Raviart, J. M. Thomas,A mixed finite element for 2nd order elliptic problems, Proceedings of the Symposium on the Mathematical Aspects of the Finte Element Methods, Lecture Notes in Math. (1977), Springer-Berlin. · Zbl 0362.65089
[27] P. A. Raviart, J. M. Thomas,Primal Hybrid Finite Element Methods for 2nd order Elliptic Equations, Math. Comput,31 (1977). · Zbl 0364.65082
[28] G. Strang, G. J. Fix,An analysis of the Finite Element Method (1973), Prentice Hall, Englewood Cliffs. · Zbl 0356.65096
[29] J. M. Thomas,Methodes des éléments finis hybrides duaux pour les problèmes elliptiques du second order, R.A.I.R.O., 10, 12, (1976), 51–79.
[30] J. M. Thomas,Thesis, (1977) Unversité de Paris VI.
[31] S. Timoshenko,Theory of Plates and Shells (1959), Mc-Graw-Hill, New York. · JFM 66.1049.02
[32] O. C. Zienkiewicz,The finite element method in engineering Science (1971), Mc-Graw-Hill, London. · Zbl 0237.73071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.