×

zbMATH — the first resource for mathematics

Hamiltonian-connected tournaments. (English) Zbl 0435.05026

MSC:
05C20 Directed graphs (digraphs), tournaments
05C45 Eulerian and Hamiltonian graphs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alspach, B, Cycles of each length in regular tournaments, Canad. math. bull., 10, 283-286, (1967) · Zbl 0148.43602
[2] Alspach, B; Reid, K.B; Roselle, D.P, Bypasses in asymmetric digraphs, J. combinatorial theory ser. B, 17, 11-18, (1974) · Zbl 0268.05109
[3] \scL. W. Beineke and K. B. Reid, Survey article on tournaments, in “Selected Topics in Graph Theory” (L. W. Beineke and R. J. Wilson, eds.), Academic Press, New York, in press.
[4] Ghouila-Houri, A, Une condition sufficante d’existence d’un circuit hamiltonien, C. R. acad. sci. Paris, 25, 495-497, (1960) · Zbl 0091.37503
[5] Goldberg, M; Moon, J.W, Cycles in k-strong tournaments, Pacific J. math., 40, 89-96, (1972) · Zbl 0207.23003
[6] Harary, F, ()
[7] Jakobsen, O.S, Cycles and paths in tournaments, ()
[8] Kotzig, A, Des cycles dans LES tournois, (), 203-208 · Zbl 0185.27903
[9] Meyniel, M, Une condition sufficante d’existence d’un circuit hamiltonien dans un graphe oriente, J. combinatorial theory ser. B, 14, 137-147, (1973) · Zbl 0259.05114
[10] Moon, J.W, ()
[11] Overbeck-Larish, M, Hamiltonian paths in oriented graphs, J. combinatorial theory ser. B, 21, 76-80, (1976) · Zbl 0294.05112
[12] \scM. Overbeck-Larish, private communication, 1977.
[13] Rédei, L, Ein kombinatorischer satz, Acta litt. Szeged, 7, 39-43, (1934) · Zbl 0009.14606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.