×

zbMATH — the first resource for mathematics

An extension of the Nash bargaining problem and the Nash social welfare function. (English) Zbl 0434.90011

MSC:
91B14 Social choice
91A12 Cooperative games
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arrow, K. J., Social Choice and Individual Values, Wiley, New York, 2nd ed., 1963. · Zbl 0984.91513
[2] Dieudonne, J., Foundations of Modern Analysis, Academic Press, New York, 1960.
[3] Harsanyi, J. C., ?On the Rationality Postulates Underlying the Theory of Cooperative Games?, Journal of Conflict Resolution 5 (1961), 179-196. · doi:10.1177/002200276100500205
[4] Kaneko, N. and Nakamura, K., ?The Nash Social Welfare Function? (1977), Econometrica 47 (1979), 423-435. · Zbl 0431.90091 · doi:10.2307/1914191
[5] Kaneko, M. and Nakamura, K., ?Cardinalization of the Nash Social Welfare Function? Economic Studies Quarterly 20 (1979), 227-233. · Zbl 0431.90091
[6] Kaneko, M., ?A Bilateral Monopoly and the Nash Cooperative Solution?, D.P. 23, Institute of Socio-Economic Planning, University of Tsukuba, 1978.
[7] Kaneko, M., ?The Nash Social Welfare Function for a Measure Space of Individuals?, D.P. 24, Institute of Socio-Economic Planning, University of Tsukuba, 1978.
[8] Luce, R. D. and Raiffa, H., Games and Decisions, Wiley, New York, 1957. · Zbl 0084.15704
[9] Nash, J. F., ?The Bargaining Problem?, Econometrica 18 (1950), 155-162. · Zbl 1202.91122 · doi:10.2307/1907266
[10] Nash, J. F., ?Two Person Cooperative Games?, Econometrica 21 (1953), 128-140. · Zbl 0050.14102 · doi:10.2307/1906951
[11] Osborne, D. K., ?Irrelevant Alternatives and Social Welfare?, Econometrica 44 (1976), 1001-1015. · Zbl 0338.90010 · doi:10.2307/1911541
[12] Owen, G., Game Theory, W. B. Saunder, Philadelphia, 1968.
[13] Shapley, L. S. and Shubik, M., Game Theory in Economics - Chapter 4: Preference and Utility, R-904/4-NSF, Rand Co., 1974. · Zbl 0236.90078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.