×

zbMATH — the first resource for mathematics

Semi-stable curves on algebraic surfaces and logarithmic pluricanonical maps. (English) Zbl 0431.14011

MSC:
14J15 Moduli, classification: analytic theory; relations with modular forms
14H99 Curves in algebraic geometry
14H10 Families, moduli of curves (algebraic)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] [A] Atiyah, M.F.: Vector bundles over an elliptic curve. Proc. Lond. Math. Soc.27, 414-452 (1957) · Zbl 0084.17305 · doi:10.1112/plms/s3-7.1.414
[2] [Be] Beauville, A.: Surfaces algébriques complexes. Astérisque54, 1-165 (1978).
[3] [Bo] Bombieri, E.: Canonical models of surfaces of general type. Publ. Math. IHES42, 172-219 (1973)
[4] [D] Deligne, P.: Théorie de Hodge. II. Publ. Math. IHES40, 5-57 (1972)
[5] [D, M] Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publ. Math. IHES36, 75-110 (1969) · Zbl 0181.48803
[6] [Ham] Hammond, W.F.: Chern numbers of 2-dimensional Satake compactifications. J. Lond. Math. Soc.14, 65-70 (1976) · Zbl 0344.32016 · doi:10.1112/jlms/s2-14.1.65
[7] [HarRodel] Hartshorne, R.: Algebraic geometry. Graduate texts in Mathematics. Berlin, Heidelberg, New York: Springer 1977
[8] [He] Hemperly, J.C.: The parabolic contribution to the number of linearly independent automorphic forms on a certain bounded symmetric domain. Am. J. Math.44, 1078-1100 (1972) · Zbl 0259.32010 · doi:10.2307/2373564
[9] [Hi] Hirzebruch, F.: Überlagerungen der projektiven Ebene und Hilbertsche Modulflächen. Enseignement Math.26, 63-78 (1978) · Zbl 0382.14010
[10] [I1] Iitaka, S.: Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math.23, 525-544 (1976) · Zbl 0342.14017
[11] [I2] Iitaka, S.: Geometry on complements of lines inP 2. Tokyo J. Math.1, 1-19 (1978) · Zbl 0391.14004 · doi:10.3836/tjm/1270216590
[12] [I3] Iitaka, S.: On logarithmic K3 surfaces. Osaka J. Math.16, 675-705 (1979) · Zbl 0454.14016
[13] [Ka] Kawamata, Y.: On the classification of non-complete algebraic surfaces. In: Lecture Notes in Mathematics, Vol. 732, pp. 215-232. Berlin, Heidelberg, New York: Springer 1979
[14] [Ko] Kodaira, K.: On analytic surfaces. I, II. Ann. Math.71, 111-152 (1960);77, 563-626 (1963) · Zbl 0098.13004 · doi:10.2307/1969881
[15] [L] Laufer, H.B.: On minimally elliptic singularities. Am. J. Math.99, 1257-1295 (1977) · Zbl 0384.32003 · doi:10.2307/2374025
[16] [Mi] Miyaoka, Y.: On the Chern numbers of surfaces of general type. Invent. Math.42, 225-237 (1977) · Zbl 0374.14007 · doi:10.1007/BF01389789
[17] [Mu] Mumford, D.: Hirzebruch’s proportionality theorem in the noncompact case. Invent. Math.42, 139-172 (1977) · Zbl 0365.14012 · doi:10.1007/BF01389790
[18] [P] Persson, U.: On degenerations of algebraic surfaces. Mem. Am. Math. Soc.189, 1-144 (1977) · Zbl 0368.14008
[19] [Ra] Ramanujam, C.P.: Remarks on the Kodaira vanishing theorem, a supplement to this article.J. Indian Math. Soc.36, 41-51 (1972);38, 121-124 (1974) · Zbl 0276.32018
[20] [Re] Reid, M.: Bogomolov’s theoremc 1 2 ?4c 2. In: Int. Symp. Alg. Geometry Kyoto 1977, pp. 623-642. Tokyo: Kinokuniya 1978
[21] [Sa] Sakai, F.: Canonical models of complements of stable curves. In: Int. Symp. Alg. Geometry Kyoto 1977, pp. 643-661. Tokyo: Kinokuniya 1978
[22] [So] Sommese, A.J.: Hyperplane sections of projective surfaces. Duke Math. J.46, 377-401(1979) · Zbl 0415.14019 · doi:10.1215/S0012-7094-79-04616-7
[23] [Su] Suwa, T.: On ruled surfaces of genus 1. J. Math. Soc. Japan21, 291-311 (1969) · Zbl 0175.47902 · doi:10.2969/jmsj/02120291
[24] [V] Van de Ven: On the 2-connectedness of very ample divisors on a surface. Duke Math. J.46, 403-407 (1979) · Zbl 0458.14003 · doi:10.1215/S0012-7094-79-04617-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.