zbMATH — the first resource for mathematics

Continuous posets and adjoint sequences. (English) Zbl 0427.06003

06A15 Galois correspondences, closure operators (in relation to ordered sets)
18B35 Preorders, orders, domains and lattices (viewed as categories)
Full Text: DOI EuDML
[1] Artin, M., A. Grothendieck, and J. Verdier: Théorie des topos et cohomologie étale des schémas. Springer Lect. Notes in Math. 269 (1972) (rev. ed. of SGA 4, 1962/1963).
[2] Booth, P. I.: Sequences of adjoint functors. Archiv d. Math. (Basel) 23 (1972), 489–493. · Zbl 0249.18008
[3] Bruns, G.: Darstellungen und Erweiterungen geordneter Mengen I und II. J. f. d. reine angewandte Math. 209 (1962), 167–200, resp., 210 (1962), 1–23. · Zbl 0148.01202 · doi:10.1515/crll.1962.209.167
[4] Duskin, J. W.: Simplicial methods and the interpretation of ”triple” cohomology. Memoirs Amer. Math. Soc. 163 (1975). · Zbl 0376.18011
[5] Georgescu, G. and B. Lungulescu: Sur les propriétés topologiques des structures ordonnées. Revue Roumaine Math. Pures Appl. 14 (1969), 1453–1456. · Zbl 0201.24502
[6] Hoffmann, R.-E.: Sobrification of partially ordered sets. Semigroup Forum (to appear). · Zbl 0402.54035
[7] Hoffmann, R.-E.: Projective sober spaces. Preprint. · Zbl 0486.54025
[8] Hofmann, K. H. and A. R. Stralka: The algebraic theory of compact Lawson semilattices-Applications of Galois connections to compact semilattices. Dissertationes Math. (Rozprawy Mat.) 137 (1976), 1–54. · Zbl 0359.06016
[9] Isbell, J. R.: Function spaces and adjoints. Math. Scand. 36 (1975), 317–339. · Zbl 0309.54016
[10] Lawson, J. D.: Continuous semilattices and duality. Memo, Jan. 4, 1977 (distributed to members of SSC).
[11] Mac Lane, S.: Categories for the working mathematician. Springer: Berlin-Heidelberg-New York, 1971. · Zbl 0232.18001
[12] Markowsky, G.: A motivation and generalization of Scott’s notion of a continuous lattice. Preprint. · Zbl 0472.06008
[13] Schubert, H.: Categories. Springer: Berlin-Heidelberg-New York, 1972. · Zbl 0253.18002
[14] Scott, D.: Continuous lattices. In: Proc. Dalhousie conf. on toposes, algebraic geometry and logic, pp. 97–136. Springer Lect. Notes in Math. 274 (1972). · Zbl 0239.54006
[15] SCS (=Seminar on Continuity in (Semi-) lattices): A compendium of continuous lattices, part I. Prepared by K. H. Hofmann, J. Lawson, G. Gierz, K. Keimel. Preliminary version (distributed at the workshop II ”continuous lattices” at TH Darmstadt, July 1978).
[16] Wilson, R. L.: Relationships between continuous posets and compact Lawson posets. Abstract 750-A19, Notices Amer. Math. Soc. 24 (1977), A-628.
[17] Wyler, O.: Dedekind-complete posets and Scott topologies. Memo. April 18, 1977 (distributed to members of SCS). · Zbl 0488.54018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.