×

zbMATH — the first resource for mathematics

Symmetric compact complex spaces. (English) Zbl 0423.32015

MSC:
32M10 Homogeneous complex manifolds
32C15 Complex spaces
32M05 Complex Lie groups, group actions on complex spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Bochner AndD. Montgomery, Groups on analytic manifolds. Annals of Math. (2)48, 659-669 (1947). · Zbl 0030.07501 · doi:10.2307/1969133
[2] A. Borel etA. Haefliger, La classe fondamentale d’un espace analytique. Bull. Soc. Math. France89, 461-513 (1961). · Zbl 0102.38502
[3] A. Borel undR. Remmert, ?ber kompakte homogene K?hlersche Mannigfaltigkeiten. Math. Ann.145, 429-439 (1962). · Zbl 0111.18001 · doi:10.1007/BF01471087
[4] N.Bourbaki, Topologie g?n?rale. Chap. 5 a 10. Paris 1974. · Zbl 0337.54001
[5] H.Cartan, Sur les groupes de transformations analytiques. Act. Sci. Inc.198, Paris 1935. · JFM 61.0370.02
[6] H. Holman, Komplexe R?ume mit komplexen Transformationsgruppen. Math. Ann.150, 327-360 (1963). · Zbl 0156.30603 · doi:10.1007/BF01470762
[7] H. Kerner, ?ber die Automorphismengruppen kompakter komplexer R?ume. Arch. Math.11, 282-288 (1960). · Zbl 0112.31205 · doi:10.1007/BF01236946
[8] W. Kaup, Infinitesimale Transformationsgruppen komplexer R?ume. Math. Ann.190, 72-92 (1965). · Zbl 0146.31102 · doi:10.1007/BF01364336
[9] D. Montgomery, Simply connected homogeneous spaces. Proc. Amer. Math. Soc.1, 467-469 (1950). · Zbl 0041.36309 · doi:10.1090/S0002-9939-1950-0037311-6
[10] G. D. Mostow, Self-adjoint group. Ann. of Math. (2)62, 44-55 (1955). · Zbl 0065.01404 · doi:10.2307/2007099
[11] J. De Siebenthal, Sur les groupes de Lie compacts non connexes. Comm. Math. Helv.31, 41-89 (1956). · Zbl 0075.01602 · doi:10.1007/BF02564352
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.