Hlavacek, Ivan Dual finite element analysis for elliptic problems with obstacles on the boundary. I. (English) Zbl 0422.65065 Apl. Mat. 22, 244-255 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 Documents MSC: 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 35J25 Boundary value problems for second-order elliptic equations 65K10 Numerical optimization and variational techniques 65N15 Error bounds for boundary value problems involving PDEs Keywords:elliptic model problem; dual variational formulation; piecewise linear finite elements; a priori error estimates; a posteriori error estimates; two-sided bounds PDF BibTeX XML Cite \textit{I. Hlavacek}, Apl. Mat. 22, 244--255 (1977; Zbl 0422.65065) Full Text: EuDML OpenURL References: [1] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. · Zbl 1225.35003 [2] G. N. Jakovlev: Boundary properties of functions of class \(W_p^{(1)}\) on the domains with angular points. (in Russian). DAN SSSR, 140 (1961), 73-76. [3] I. Hlaváček: Dual finite element analysis for unilateral boundary value problems. Aplikace matematiky 22 (1977), 14-51. [4] J. Céa: Optimisation, théorie et algorithmes. Dunod, Paris 1971. · Zbl 0211.17402 [5] U. Mosco G. Strang: One-sided approximations and variational inequalities. Bull. Am. Soc. 80 (1974), 308-312. · Zbl 0278.35026 [6] I. Hlaváček: Some equilibrium and mixed models in the finite element method. Proceedings of the Banach Internat. Math. Center, Warsaw This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.