×

zbMATH — the first resource for mathematics

On the evolution law of weak discontinuities for hyperbolic quasi-linear systems. (English) Zbl 0418.35065

MSC:
35L67 Shocks and singularities for hyperbolic equations
35A20 Analyticity in context of PDEs
PDF BibTeX Cite
Full Text: DOI
References:
[1] Nitsche, J., Über unstetigkeiten in der ableitungen von Lösungen quasilinearer hypterbolischer differential-gleichungssysteme, J. rat. mech. anal., 2, 291-297, (1953) · Zbl 0050.09406
[2] Thomas, T.Y., The growth and decay of sonic discontinuities in ideal gases, J. math. mech., 6, 455-469, (1957) · Zbl 0079.18607
[3] Chen, P.J., Growth and decay of waves in solids, (), 303-402
[4] Boillat, G.; Varley, E.; Cumberbatch, E., Non-linear theory of wave-front propagation, (), La propagation des ondes, J. inst. math. applics, 1, 101-112, (1965), Gauthier-Villars Paris, See also:
[5] Boillat, G., Ondes asymptotiques non linéaires, Ann. mat. pura ed appl., 111, IV, 31-44, (1976) · Zbl 0355.35013
[6] Jeffrey, A.; Taniuti, T.; Prasad, P.; Tagare, S.G., On the breakdown of the continuity in the motion of a compressible fluid with variable density in an ambient medium, Arch. rat. mech. anal., Progr. theor. phys. suppl. N.9, Zamp, 22, 359-364, (1971), See also · Zbl 0247.76057
[7] Jeffrey, A., The propagation of weak discontinuities in quasilinear hyperbolic systems with discontinuous coefficients, Applicable anal., 3, 79-100, (1973), Part I-Fundamental Theory · Zbl 0256.35054
[8] Part II-Special cases and application, ibidem 359-375. · Zbl 0081.08803
[9] Ruggeri, T., Onde di discontinuitá ed equazioni costitutive nei corpi elastici isotropi sottoposti a deformazioni finite, Ann. mat. pura e appl., 112, 112, 315-332, (1977) · Zbl 0363.73006
[10] Boillat, G.; Ruggeri, T., Characteristic shocks: complete and strictly exceptional systems, Boll. un. mat. ital., 15-A, 5, 197-204, (1978) · Zbl 0396.76045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.