zbMATH — the first resource for mathematics

A new type assignment for \(\lambda\)-terms. (English) Zbl 0418.03010

03B40 Combinatory logic and lambda calculus
Full Text: DOI EuDML
[1] Birkhoff, G.: Lattice theory. American Mathematical Society Colloquium Publications25 (1940). · Zbl 0063.00402
[2] Böhm, C., Groß, W.: Introduction to the CUCH. In: Caianiello, E. R. (ed.): Automata Theory, pp. 35–65. Amsterdam: North-Holland 1966.
[3] Böhm, C., Dezani-Ciancaglini, M.: \(\lambda\)-Terms as total or partial function on normal forms. In: Böhm, C. (ed.): \(\lambda\)-Calculus and computer science theory. Lecture Notes in Computer Science, Vol. 37, pp. 96–121. Berlin, Heidelberg, New York: Springer 1975. · Zbl 0342.02017
[4] Böhm, C., Coppo, M., Dezani-Ciancaglini, M.: Termination test inside \(\lambda\)-calculus. In: Salomaa, A. and Steinby, M. (eds.): Lecture Notes in Computer Science, Vol. 52, pp. 95–110. Berlin, Heidelberg, New York: Springer 1977. · Zbl 0358.02025
[5] Church, A.: Combinatory logic as a semigroup. Bull. Amer. Math. Soc. (Abstract)43 333 (1937).
[6] Church, A.: A formalization of the simple theory of types. J. Symbol. Logic5, 56–58 (1950). · Zbl 0023.28901 · doi:10.2307/2266170
[7] Curry, H. B., Feys, R.: Combinatory logic, Vol. 1. Amsterdam: North-Holland 1958. · Zbl 0081.24104
[8] Curry, H. B., Hindley, J. R., Seldin, J. P.: Combinatory logic, Vol. 2. Amsterdam: North-Holland 1972. · Zbl 0242.02029
[9] Dezani-Ciancaglini, M.: A type theory for \(\lambda\)-\(\beta\)-normal forms. Proc. of the Symposium Informatica75, BLED (1975). · Zbl 0342.02017
[10] Gentzen, G.: Investigations into logical reductions. In: The Collected Papers of Gerard Gentzen. Amsterdam: North-Holland 1969.
[11] Hindley, R., Lercher, B., Seldin, J. P.: Introduction to combinatory logic. London North. Soc. Lecture Note Series7 (1972). · Zbl 0269.02005
[12] Seldin, J. P.: The theory of generalized functionality. I. Unpublished manuscript (1976).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.