×

zbMATH — the first resource for mathematics

Reflection and transmission of discontinuity wave through a shock wave. General theory including also the case of characteristic shocks. (English) Zbl 0416.76029

MSC:
76L05 Shock waves and blast waves in fluid mechanics
35L67 Shocks and singularities for hyperbolic equations
35L65 Hyperbolic conservation laws
PDF BibTeX Cite
Full Text: DOI
References:
[1] Boillat, La propagation des ondes (1965)
[2] DOI: 10.1007/BF02411808 · Zbl 0355.35013
[3] DOI: 10.1080/00036817408839077 · Zbl 0298.35041
[4] DOI: 10.1080/00036817308839058 · Zbl 0256.35054
[5] Strumia, Riv. Mat. Univ. Parma 4 (1978)
[6] Boillat, C.R. Acad. Sci. Paris Sér. A 284 pp 1481– (1977)
[7] Boillat, J. Math. Pures Appl. 56 pp 137– (1977)
[8] Boillat, C.R. Acad. Sci. Paris Sér. A 280 pp 1325– (1975)
[9] Boillat, C.R. Acad. Sci. Paris Sér. A 275 pp 1255– (1972)
[10] Boillat, C.R. Acad. Sci. Paris Sér. A 283 pp 409– (1976)
[11] Boillat, C.R. Acad. Sci. Paris Sér. A 274 pp 1018– (1972)
[12] Jeffrey, Nonlinear wave propagation with applications to physics and mag-netohydrodynamics (1964)
[13] DOI: 10.1002/cpa.3160100406 · Zbl 0081.08803
[14] Brun, Mechanical waves in solids (1975)
[15] Jeffrey, Quasilinear hyperbolic systems and waves (1976) · Zbl 0322.35060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.