×

Dual finite element analysis for unilateral boundary value problems. (English) Zbl 0416.65070


MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] J. P. Aubin H. G. Burchard: Some aspects of the method of the hypercircle applied to elliptic variational problems. Num. sol. PDE-II, SYNSPADE (1970), 1-67.
[2] I. Hlaváček: Some equilibrium and mixed models in the finite element method. Proceedings of the St. Banach Internat. Math. Center, Warsaw)
[3] J. Haslinger I. Hlaváček: Convergence of a finite element method based on the dual variational formulation. Apl. mat. 21 (1976), 43 - 65.
[4] G. Fichera: Boundary value problems of elasticity with unilateral constraints. Encyclopedia of Physics S. Flügge, Vol. VIa/2, Springer, Berlin 1972.
[5] J. Céa: Optimisation, théorie et algorithmes. Dunod, Paris 1971. · Zbl 0211.17402
[6] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. · Zbl 1225.35003
[7] U. Mosco G. Strang: One-sided approximations and variational inequalities. Bull. Am. Math. Soc. 80 (1974), 308-312. · Zbl 0278.35026
[8] J. H. Bramble M. Zlámal: Triangular elements in the finite element method. Math. Comp. 24 (1970), 809-820. · Zbl 0226.65073
[9] G. Zoutendijk: Methods of feasible directions. Elsevier, Amsterdam 1960. · Zbl 0097.35408
[10] I. Hlaváček: Dual finite element analysis for elliptic problems with obstacles on the boundary. Apl. mat. 22
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.