×

zbMATH — the first resource for mathematics

The edge-coloring of complete hypergraphs. I. (English) Zbl 0413.05040

MSC:
05C65 Hypergraphs
05A05 Permutations, words, matrices
05C15 Coloring of graphs and hypergraphs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Peltesohn, R, Das turnierproblem für spiele zu je dreien, Inaugural dissertation, (1936), Berlin · JFM 62.0052.02
[2] Hoffman, A.J; Kruskal, J.B, Integral boundary points of convex polyhedra, (), 223-246 · Zbl 0072.37803
[3] Katona, G.O.H, On separating systems of a finite set, J. combinatorial theory, 1, 174-194, (1966) · Zbl 0144.00501
[4] de Werra, D, A few remarks on chromatic scheduling, (), 337-342
[5] Katona, G.O.H, A simple proof of the Erdös-chao ko-Rado theorem, J. combinatorial theory, 13, 183-184, (1972) · Zbl 0262.05002
[6] Brace, A; Daykin, D.E, Sperner-type theorems of finite sets, () · Zbl 0215.33001
[7] Laskar, R; Hare, W, Chromatic numbers for certain graphs, J. London math. soc. (2), 4, 489-492, (1972) · Zbl 0233.05106
[8] Ray-Chaudhuri, D.K; Wilson, R.M, The existence of resolvable block designs, (), 361-375
[9] Berge, C, ()
[10] Weinberger, D.B, Investigations in the theory of blocking Paris of polyhedra, (), Tech. Report No. 190
[11] \scD. B. Weinberger, Network flows, minimum coverings and the four-color conjecture. · Zbl 0346.90061
[12] Laskar, R; Auerbach, B, On decomposition of r-partite graphs into edge-disjoint Hamilton circuits, Discrete math., 14, 265-268, (1976) · Zbl 0322.05128
[13] Berge, C, On good k-colourings of a hypergraph, (), 159-163
[14] \scZ. Baranyai, On the factorisation of the complete uniform hypergraph, Ref. [13, pp. 91-108].
[15] Brouwer, A.E, A generalization of Baranyai’s theorem, Mathematics centre report ZW 81/76, (1976), Amsterdam · Zbl 0341.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.