×

Semimodular functions and combinatorial geometries. (English) Zbl 0411.05029


MSC:

05B35 Combinatorial aspects of matroids and geometric lattices
52A40 Inequalities and extremum problems involving convexity in convex geometry
15A39 Linear inequalities of matrices
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Thomas H. Brylawski, A decomposition for combinatorial geometries, Trans. Amer. Math. Soc. 171 (1972), 235 – 282. · Zbl 0224.05007
[2] Tom Brylawski, Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc. 203 (1975), 1 – 44. · Zbl 0299.05023
[3] Thomas H. Brylawski, An affine representation for transversal geometries, Studies in Appl. Math. 54 (1975), no. 2, 143 – 160. · Zbl 0309.05018
[4] Gustave Choquet, Theory of capacities, Ann. Inst. Fourier, Grenoble 5 (1953 – 1954), 131 – 295 (1955). · Zbl 0064.35101
[5] P. Crawley and R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Englewood Cliffs, N.J., 1973. · Zbl 0494.06001
[6] Henry H. Crapo, Single-element extensions of matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 55 – 65. · Zbl 0141.21701
[7] Henry H. Crapo, Erecting geometries, Proc. Second Chapel Hill Conf. on Combinatorial Mathematics and its Applications (Univ. North Carolina, Chapel Hill, N.C., 1970) Univ. North Carolina, Chapel Hill, N.C., 1970, pp. 74 – 99. · Zbl 0253.05002
[8] Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory: Combinatorial geometries, Preliminary edition, The M.I.T. Press, Cambridge, Mass.-London, 1970. · Zbl 0231.05024
[9] Thomas A. Dowling and Douglas G. Kelly, Elementary strong maps between combinatorial geometries, Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973) Accad. Naz. Lincei, Rome, 1976, pp. 121 – 152. Atti dei Convegni Lincei, No. 17 (English, with Italian summary). · Zbl 0359.05019
[10] Jack Edmonds, Matroid partition, Mathematics of the Decision Sciences, Part I (Seminar, Stanford, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1968, pp. 335 – 345.
[11] Jack Edmonds, Submodular functions, matroids, and certain polyhedra, Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) Gordon and Breach, New York, 1970, pp. 69 – 87. · Zbl 0268.05019
[12] J. Edmonds and G.-C. Rota, Submodular set functions (Abstract, Waterloo Combinatorics Conf.), Univ. of Waterloo, Ontario, 1966.
[13] D. A. Higgs, A lattice order on the set of all matroids on a set, Canad. Math. Bull. 9 (1966), 684-685.
[14] D. A. Higgs, Maps of geometries, J. London Math. Soc. 41 (1966), 612 – 618. · Zbl 0173.22201
[15] D. A. Higgs, Strong maps of geometries, J. Combinatorial Theory 5 (1968), 185 – 191. · Zbl 0164.20602
[16] J. S. Pym and Hazel Perfect, Submodular functions and independence structures, J. Math. Anal. Appl. 30 (1970), 1 – 31. · Zbl 0169.01902
[17] J. Rosenm├╝ller and H. G. Weidner, A class of extreme convex set functions with finite carrier, Advances in Math. 10 (1973), 1 – 38. · Zbl 0251.90037
[18] Lloyd S. Shapley, Cores of convex games, Internat. J. Game Theory 1 (1971/72), 11 – 26; errata, ibid. 1 (1971/72), 199. · Zbl 0222.90054
[19] W. T. Tutte, Lectures on matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 1 – 47. · Zbl 0151.33801
[20] D. J. A. Welsh, On matroid theorems of Edmonds and Rado, J. London Math. Soc. (2) 2 (1970), 251 – 256. · Zbl 0214.26301
[21] D. J. A. Welsh, Related classes of set functions, Studies in pure mathematics (presented to Richard Rado), Academic Press, London, 1971, pp. 261 – 269. · Zbl 0247.05005
[22] Hassler Whitney, On the Abstract Properties of Linear Dependence, Amer. J. Math. 57 (1935), no. 3, 509 – 533. · Zbl 0012.00404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.