×

zbMATH — the first resource for mathematics

Characterizations of optimality in convex programming: The nondifferentiable case. (English) Zbl 0408.90068

MSC:
90C25 Convex programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abrams R., J. Optimiz. Th. Appl.
[2] Ben-Israel A., Econometrica 45 pp 811– (1977) · Zbl 0367.90093
[3] Ben-Tal A., J. Optimiz. Th. Appl. 20 pp 417– (1976) · Zbl 0327.90025
[4] Dubovitskii A. Ya., Dokl. Akad. Nank SSSR 149 4 pp 759– (1963)
[5] Fiacco A.V., Nonlinear Programming: Sequential Unconstrained Minimization Techniques (1968)
[6] Geoffrion A.M., SIAM Review 13 pp 1– (1971) · Zbl 0232.90049
[7] Girsanov, I.V. 1972.Lectures on Mathematical Theory of Extremum Problems, 136Springer-Verlag. · Zbl 0234.49016
[8] Hestenes M.R., Optimization Theory: The Finite Dimensional Case (1975) · Zbl 0327.90015
[9] Holmes R. B., Geometric Functional Analysis and its Applications (1975) · Zbl 0336.46001
[10] Kuhn H.W., Proceedings of the Second Berkley Symposium on Mathematical Statistics and Probability pp 81– (1951)
[11] Mangasarian O.L., Nonlinear Programming (1969)
[12] Pshenichny, B.N. 1971.Necessary Conditions for an Extremum, Vol. 18, 230New York: Marcel Dekker.
[13] Rockafellar, R. T. 1970.Convex Analysis, Vol. 18, 451Princeton, New Jersey: Princeton University Press. · Zbl 0193.18401
[14] Rockafellar R. T., Nonlinear Programming (1970)
[15] Zoutendijk G., Methods of Feasible Directions (1960) · Zbl 0097.35408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.