×

zbMATH — the first resource for mathematics

A study of Kripke-type models for some modal logics by Gentzen’s sequential method. (English) Zbl 0405.03013

MSC:
03B45 Modal logic (including the logic of norms)
03C90 Nonclassical models (Boolean-valued, sheaf, etc.)
03F05 Cut-elimination and normal-form theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bass, H., Finite monadic algebras, Proc. Amer. Math. Soc., 5 (1958), 258-268. · Zbl 0089.01904 · doi:10.2307/2033149
[2] Cresswell, M. J., Frames and models in classical modal logic, in: Algebra and logic, Lecture Notes in Math., 450 (1975), 63-86, Springer, Berlin-Heidelberg- New York. · Zbl 0315.02029
[3] Fitting, M. C., Intuitionistic logic model theory and forcing, North-Holland, Amsterdam, 1969. · Zbl 0188.32003
[4] Gentzen, G., Untersuchungen iiber das logische Schliessen I, II, Math, Z., 39 (1935), 176-210, 405-431.
[5] 9 Investigations into logical deduction (English translation of [4]), in: Szabo, M. E., ed., The collected papers of Gerhard Gentzen, 68-131, North- Holland, Amsterdam, 1969.
[6] Godel, K., Die Vollstandigkeit der Axiome des logischen Funktionenkalkiils, Monatsh. Math. Phys., 37 (1930), 349-360.
[7] Gratzer, G., Universal algebra, Van Nostrand, Princeton, 1968. · Zbl 0182.34201
[8] Hayashi, T., Notes on K and KI, private communication, 1975.
[9] 9 Disjunctive property in McCarthy’s prepositional knowledge system, private communication, 1976.
[10] Henkin, L., The completeness of the first-order functional calculus, /. Symbolic Logic, 14 (1949), 159-166. · Zbl 0034.00602 · doi:10.2307/2267044
[11] Hintikka, J., Knowledge and Belief, an introduction to the logic of the two no- tions, Cornell University Press, Ithaca and London, 1962.
[12] Itoh, M., On the relation between the modal sentential logic and monadic predicate calculus I, II, III (in Japanese), /. Japan Assoc. for Philosophy of Sciences, 3, 4, 6 (1955-56), 40-43, 14-19, 18-25.
[13] Kreisel, G., A survey of proof theory, /. Symbolic Logic, 33 (1968), 321-388. · Zbl 0177.01002 · doi:10.2307/2270324
[14] 9 A survey of proof theory II, in: Festad, J. E., ed., Proceedings of the Second Scandinavian Logic Symposium, North-Holland, Amsterdam, 1971.
[15] Kripke, S., Semantical analysis of modal logic I - normal modal prepositional calculi, Z. Math. Logik Grundlagen Math., 9 (1963), 67-96. · Zbl 0118.01305 · doi:10.1002/malq.19630090502
[16] , Semantical analysis of intuitionistic logic I, in: Formal systems and recursive functions, North-Holland, Amsterdam, 1965.
[17] Lemmon, E. J., Algebraic semantics for modal logics I, II, /. Symbolic Logic, 31 (1966), 46-65, 192-218. · Zbl 0147.24805 · doi:10.2307/2270619
[18] Lemmon, E. J. and Scott, D. S., Intensional logic, preliminary draft of initial chapters by E. J. Lemmon, mimeographed, Stanford University, 1966.
[19] Lyndon, R. C, Notes on Logic, Van Nostrand, Princeton, 1966. · Zbl 0168.00301
[20] Maehara, S., A general theory of completeness proofs, Ann. of the Assoc. for Philosophy of Science, 3 (1970), 242-256. · Zbl 0226.02032
[21] McCarthy, J., private communication, 1975.
[22] , An axiomatization of knowledge and the example of the wise man puzzle, private communication, 1976.
[23] Mitchell, B., Theory of categories, Academic Press, New York and London, 1965. · Zbl 0136.00604
[24] Ohnishi, M. and Matsumoto, K., Gentzen method in modal calculi, Osaka Math. J., 9 (1957), 113-130 and 11 (1959), 115-120. · Zbl 0080.00701
[25] Prawitz, D., Natural deduction, a proof-theoretical study, Almqvist & Wiksell, Stockholm, 1965. · Zbl 0173.00205
[26] , Ideas and results in proof theory, in: Fenstad, J. E., ed., Proceed- ings of the Second Scandinavian Logic Symposium, North-Holland, Amsterdam, 1971. · Zbl 0226.02031
[27] , Comments on Gentzen-type procedures and the classical notion of truth, in: Proof Theory Symposion, Kiel 1974, Lecture Notes in Math., 500 (1975), 290-319, Springer, Berlin-Heidelberg-New York. · Zbl 0342.02022
[28] Rasiowa, H., An algebraic approach to non-classical logics, North-Holland, Amsterdam, 1974. · Zbl 0299.02069
[29] Rasiowa, H. and Sikorski, R., The mathematics of metamathematics, Mono- grafie Mathemtyczne 41, Warszawa, 1963. · Zbl 0122.24311
[30] Sato, M., Kripke-type models for McCarthy’s prepositional knowledge system, unpublished memo, 1975.
[31] Schutte, K., Vollstdndige Systeme modaler und intuitionistischer Logik, Er- gebnisse der Mathematik und ihrer Grenzgebiete, Band 42, Springer, Berlin- Heidelberg-New York, 1968. · Zbl 0157.01602
[32] Scott, D. S., Continuous lattices, in: Toposes, algebraic geometry and logic, Lecture Notes in Math., 274 (1972), 97-136, Springer, Berlin-Heidelberg-New York.
[33] , Data types as lattices, in: Logic conference, Kiel 1974, Lecture Notes in Math., 499 (1975), 579-651, Springer, Berlin-Heidelberg-New York.
[34] Segerberg, K., An essay in classical modal logic, Filosofiska Studier, Uppsala University, 1971. · Zbl 0311.02028
[35] Smullyan, R. M., First-order logic, Ergebnisse der Mathmatik und ihrer Grenz- gebiete, Band 43, Springer, Berlin-Heidelberg-New York, 1968.
[36] Sonobe, O., A note on the modal logic S5, private communication, 1975.
[37] Takahashi, M., A system of simple type theory of Gentzen style with inference on extensionality and the cut-elimination in it, Comm. Math. Univ. Sancti Pauli, 18 (1970), 129-147. · Zbl 0223.02021
[38] Takeuti, G., Proof theory, North-Holland, Amsterdam, 1975.
[39] Zucker, J., The correspondence between cut-elimination and normalization, Ann. Math. Logic, 7 (1974), 1-155. · Zbl 0298.02023 · doi:10.1016/0003-4843(74)90010-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.