×

zbMATH — the first resource for mathematics

Theoretical derivation of Darcy’s law. (English) Zbl 0402.76074

MSC:
76S05 Flows in porous media; filtration; seepage
76A02 Foundations of fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmed, N., andD. K. Sunada: Nonlinear flow in porous media. Jour. Hydr. Div., ASCE95 (1969).
[2] Bachmat, Y.: Basic transport coefficients as aquifer characteristics. International Association of Scientific Hydrology Symposium on Fractured Rocks, Dubrovnik,1, 63, (1965).
[3] Bhattacharaya, R. N., V. I. Gupta andG. Sposito: On the stochastic foundations of the theory of unsaturated flow. Water Resources Research (1976), in press.
[4] Bear, J.: Dynamics of Fluids in Porous Media. New York: Elsevier. 1972. · Zbl 1191.76001
[5] Carman, P. C.: Flow of Gases through Porous Media. London: Butterworths. 1956. · Zbl 0073.43304
[6] Darcy, H.: Les Fontaines Publiques de la Ville de Dijon. Paris: Victor Dalmont. 1856.
[7] Ferrandon, J.: Les lois de l’écoulement de filtration. Le Génie Civil125, 24 (1948).
[8] Garabedian, P. R.: Partial Differential Equations. New York: J. Wiley. 1964. · Zbl 0124.30501
[9] Hall, W. A.: An analytical derivation of the Darcy equation. EOS Trans., AGU,37, 185 (1956).
[10] Hubbert, M. K.: The theory of ground water motion. Journal Geology48, 785 (1940).
[11] Hubbert, M. K.: Darcy’s law and the field equations of the flow of underground fluids. Amer. Inst. Mining Engin., Petrol. Trans.207, 222 (1956).
[12] Irmay, S.: On the theoretical derivation of Darcy and Forchheimer formulas. EOS Trans., AGU,39, 702 (1958).
[13] Lapwood, E. R.: Convection of a fluid in a porous medium. Proc. Cambr. Philos. Soc.44, 508 (1948). · Zbl 0032.09203
[14] Mokadam, R. G.: Thermodynamic analysis of the Darcy law. Trans. Amer. Soc. Mech. Engrs.83, 208 (1961). · Zbl 0121.43303
[15] Orovyan, T., andE. Sil’vyan: O povyshenii davleniya v skvazhine posle ee zakrytiya. Rev. Mécan. Appl.5, 215 (1960).
[16] Paria, G.: Flow of fluids through porous deformable solids. Appl. Mech. Rev.16, 421 (1963).
[17] Philip, J. R.: Transient fluid motions in saturated porous media. Australian Jour. Phys.10, 43 (1957). · Zbl 0096.21803
[18] Poreh, M., andC. Elata: An analytical derivation of Darcy’s law. Israel Jour. Technology4, 214 (1966).
[19] Prager, S.: Viscous flow through porous media. Phys. of Fluids4, 1477 (1961). · Zbl 0104.21402
[20] Raats, P. A. C., andA. Klute: Transport in soils: The balance of momentum. Soils Sci. Soc. Am. Proc.32, 452 (1968).
[21] Scheidegger, A. E.: The Physics of Flow through Porous Media, 2nd ed. Toronto: University of Toronto Press. 1960. · Zbl 0095.22402
[22] Scheidegger, A. E.: Statistical hydrodynamics in porous media, in: Advances in Hydroscience, Vol. 1. New York: Academic Press. 1964.
[23] Scheidegger, A. E.: Statistical theory of flow through porous media. Trans. Soc. Rheol.9, 313 (1965).
[24] Schweitzer, S.: On a possible extension of Darcy’s law. Jour. Hydrology22, 29 (1974).
[25] Slattery, J. C.: Flow of viscoelastic fluids through porous media. Amer. Inst. Chem. Engin. Jour.13, 1066 (1967).
[26] Slattery, J. C.: Single-phase flow through porous media. Amer. Inst. Chem. Engin. Jour.15, 866 (1969).
[27] Slattery, J. C.: Momentum, Energy, and Mass Transfer in Continua. New York: McGraw-Hill. 1972.
[28] Truesdell, C., andW. Noll: The non-linear field theories of mechanics, in: Handbuch der Physik, Vol. 3, pt. 3. Berlin-Heidelberg-New York: Springer. 1965.
[29] Whitaker, S.: The equations of motion in porous media. Chem. Engin. Sci.21, 291 (1966).
[30] Whitaker, S.: Diffusion and dispersion in porous media. Amer. Inst. Chem. Engin. Jour.13, 420 (1967).
[31] Whitaker, S.: Advances in theory of fluid motion in porous media. Industr. Engin. Chem.61, 14 (1969).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.