×

zbMATH — the first resource for mathematics

Domination structures and multicriteria problems in N-person games. (English) Zbl 0401.90117

MSC:
91A35 Decision theory for games
91B06 Decision theory
90C31 Sensitivity, stability, parametric optimization
91A12 Cooperative games
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aumann, R. J. and Maschler, M., ?The Bargaining Set for Cooperative Games?, in Advances in Game Theory (M. Dresher, L. S. Shapley and A. W. Tucker, eds.), Annals of Mathematics Studies, No. 52, Princeton University Press, Princeton, New Jersey, 1964. · Zbl 0132.14003
[2] Bergstresser, K., Charnes, A., and Yu, P. L., ?Generalization of Domination Structures and Nondominated Solutions in Multicriteria Decision Making?, Journal of Optimization Theory and Applications 18 (1976), 3-13. · Zbl 0298.90003 · doi:10.1007/BF00933790
[3] Billera, L. J., ?Some Recent Results in n-Person Game Theory?, Mathematical Programming 1 (1971), 58-67. · Zbl 0226.90049 · doi:10.1007/BF01584072
[4] Blackwell, D., ?An Analog of the Minimax Theorem for Vector Payoffs?, Pacific Journal of Mathematics 6 (1956), 1-8. · Zbl 0074.34403
[5] Blaquière, A., Girard, F., and Leitman, G., Quantitative and Qualitative Games, Academic Press, New York, 1969.
[6] Blau, R. A., ?Random-Payoff Two-Person Zero-Sum Games?, Operations Research 22 (1974), 1243-1251. · Zbl 0306.90087 · doi:10.1287/opre.22.6.1243
[7] Cassidy, R., Field, C., and Kirby, M., ?Solution of a Satisficing Model for Random Payoff Games?, Management Science 19 (1972), 266-271. · Zbl 0262.90073 · doi:10.1287/mnsc.19.3.266
[8] Charnes, A. and Cooper, W. W., Management Models and Industrial Applications of Linear Programming, Vols. I and II, John Wiley and Sons, New York, 1961. · Zbl 0107.37004
[9] Charnes, A. and Granot, D., ?Coalitional and Chance-Constrained Solutions to N-Person Games I: The Prior Satisficing Nucleolus?, Research Report CCS 123, The Center for Cybernetic Studies, The University of Texas at Austin, Austin, Texas, November, 1973. · Zbl 0353.90101
[10] Charnes, A. and Granot, D., ?Prior Solutions: Extensions of Convex Nucleus Solutions to Chance-Constrained Games?, Research Report CCS 148, The Center for Cybernetic Studies, The Unversity of Texas at Austin, Austin, Texas, October 1973.
[11] Charnes, A. and Keane, M., ?Convex Nuclei and the Shapley Value?, Research Report CCS 12, The Center for Cybernetic Studies, The Unversity of Texas at Austin, Austin, Texas, 1969; also Procedings of the International Congress of Mathematicians, Nice, France, 1970.
[12] Charnes, A., Kirby, M., and Raike, W., ?Chance-Constrained Games with Partially Controllable Strategies?, Operations Research 16 (1968), 142-149. · Zbl 0157.51105 · doi:10.1287/opre.16.1.142
[13] Charnes, A., Kirby, M., and Raike, W., ?Zero-Zero Chance-Constrained Games?, in The Procedings of the Fourth International Conference on Operational Research, Boston, Massachusetts, 1966(D. B. Hertz and J. Melese, eds.) Wiley-Interscience, New York, 1966, pp. 150-169; also Theory of Probability and Its Applications 13 (1968), 663-681.
[14] Charnes, A. and Kortanek, K. O., ?On Balanced Sets, Cores and Linear Programming?, Cahiers du Centre d’Etudes de Recherche Operationnelle 9 (1967), 32-43. · Zbl 0158.19205
[15] Charnes, A. and Kortanek, K. O., ?On Classes of Convex and Preemptive Nuclei for n-Person Games?, in Proceedings of the Princeton Symposium on Mathematical Programming (H. W. Kuhn, ed.), Princeton University Press, Princeton, New Jersey, 1970. · Zbl 0224.90079
[16] Charnes, A. and Littlechild, S., ?On the Formation of Unions in n-Person Games?, Journal of Economic Theory 10 (1975), 386-402. · Zbl 0315.90079 · doi:10.1016/0022-0531(75)90008-3
[17] Charnes, A., Littlechild, S., and Sorensen, S., ?Core-stem Solutions of n-Person Essential Games?, Socio-Economic Planning Sciences 1 (1973), 649-660. · doi:10.1016/0038-0121(73)90029-3
[18] Charnes, A. and Sorensen, S., ?Constrained n-Person Games?, International Journal of Game Theory 3 (1974), 141-158. · Zbl 0304.90133 · doi:10.1007/BF01763254
[19] Davis, M. and Maschler, M., ?The Kernel of a Cooperative Game?, Naval Research Logistics Quarterly 12 (1965), 223-259. · Zbl 0204.20202 · doi:10.1002/nav.3800120303
[20] Freimer, M. and Yu, P. L., ?The Application of Compromise Solutions to Reporting Games?, in Game Theory as a Theory of Conflict Resolution, (A. Rapoport, ed.), D. Reidel Publishing Company, Dordrecht, Holland, 1974.
[21] Freimer, M. and Yu, P. L., ?Some New Results on Compromise Solutions For Group Decision Problems?, Systems Analysis Program Paper No. F7231, The Graduate School of Management, The University of Rochester, Rochester, New York, June, 1973 (to appear in Management Sciene).
[22] Harsanyi, J. C., ?A Bargaining Model for the Cooperative n-Person Game?, in Contributions to the Theory of Games, Volume IV (A. W. Tucker and R. D. Luce, eds.), Annals of Mathematics Studies, No. 40, Princeton University Press, Princeton, New Jersey, 1964. · Zbl 0129.34504
[23] Horowitz, A. D., ?The Competitive Bargaining Set for Cooperative n-Person Games?, Journal of Mathematical Psychology 10 (1973), 265-289. · Zbl 0265.90067 · doi:10.1016/0022-2496(73)90018-7
[24] Isaacs, R., Differential Games, John Wiley and Sons, New York, 1965.
[25] Keane, M. A., Some Topics in n-Person Game Theory, Ph. D. Dissertation, Mathematics Department, Northwestern University, Evanston, Illinois, June, 1969.
[26] Kohlberg, E., ?On the Nucleolus of a Characteristic Function Game?, SIAM Journal on Applied Mathematics 20 (1971), 62-66. · Zbl 0228.90060 · doi:10.1137/0120009
[27] Lucas, W. F., ?Some Recent Developments in N-Person Game Theory?, SIAM Review 13 (1911), 491-523. · Zbl 0229.90055 · doi:10.1137/1013093
[28] Luce, R. D. and Raiffa, H., Games and Decisions, John Wiley and Sons, New York, 1957. · Zbl 0084.15704
[29] Owen, G., Game Theory, W. B. Saunders Company, Philadelphia, 1968.
[30] Rapoport, A. (ed.), Game Theory as A Theory of Conflict Resolution, D. Reidel Publishing Company, Dordrecht, Holland, 1974. · Zbl 0298.00027
[31] Rapoport, A., N-Person Game Theory, The University of Michigan Press, Ann Arbor, Michigan, 1969.
[32] Roth, A. E., ?Subsolutions of Cooperative Games?, Technical Report No. 118, The Economics Series, Institute for Mathematical Studies in the Social Sciences, Stanford University, Stanford, California, December, 1973.
[33] Schmeidler, D., ?The Nucleolus of a Characteristic Function Game?, SIAM Journal on Applied Mathematics 17 (1969), 1163-1170. · Zbl 0191.49502 · doi:10.1137/0117107
[34] Shapley, L. S., ?On Balanced Sets and Cores?, Naval Research Logistics Quarterly, 14 (1967), 453-460. · doi:10.1002/nav.3800140404
[35] Shapley, L. S., ?Value for n-Person Games?, in Contributions to the Theory of Games, Volume II (H. W. Kuhn and A. W. Tucker, eds.), Annals of Mathematics Studies, No. 28, Princeton University Press, Princeton, New Jersey, 1953. · Zbl 0050.14404
[36] Shapley, L. S. and Scarf, H., ?On Cores and Indivisibility? Journal of Mathematical Economics 1 (1974), 23-37. · Zbl 0281.90014 · doi:10.1016/0304-4068(74)90033-0
[37] Sorensen, S. W., A Mathematical Theory of Coalitions and Competition in Resource Development, Ph. D. Dissertation, The University of Texas at Austin, Austin, Texas, May, 1972.
[38] Spinetto, R., ?The Geometry of Solution Concepts for N-Person Cooperative Games?, Management Science 20 (1974), 1292-1299. · Zbl 0314.90103 · doi:10.1287/mnsc.20.9.1292
[39] Thrall, R. M. and Lucas, W. F., ?n-Person Games in Partition Function Form?, Naval Research Logistics Quarterly 10 (1963), 281-298. · Zbl 0204.20201 · doi:10.1002/nav.3800100126
[40] Von Neumann, J. and Morgenstern, O., Theory of Games and Economic Behavior, John Wiley and Sons, New York, 1944; 2nd ed., 1947; 3rd ed., 1953. · Zbl 0063.05930
[41] Yu, P. L., ?A Class of Solutions for Group Decision Problems?, Management Science 19 (1973), 936-946. · Zbl 0264.90008 · doi:10.1287/mnsc.19.8.936
[42] Yu, P. L., ?Introduction to Domination Structures in Multicriteria Decision Problems?, in Multiple Criteria Decision Making (J. L. Cochrane and M. Zeleny, eds.), University of South Carolina Press, Columbia, South Carolina, 1973.
[43] Yu, P. L., ?Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multiobjectives?, Journal of Optimzation Theory and Applications 14 (1974), 319-377. · Zbl 0268.90057 · doi:10.1007/BF00932614
[44] Yu, P. L., ?Domination Structures and Nondominated Solutions?, Proceedings of the International Seminar on Multicriteria Decision Making sponsored by UNESCO at CISM, Udine, Italy, June, 1974. · Zbl 0363.90005
[45] Yu, P. L. and Zeleny, M., ?The Set of A11 Nondominated Solutions in Linear Cases and a Multicriteria Simplex Method?, Journal of Mathematical Analysis and Applications 49 (1975), 430-468. · Zbl 0313.65047 · doi:10.1016/0022-247X(75)90189-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.