zbMATH — the first resource for mathematics

Regularity and stability for the mathematical programming problem in Banach spaces. (English) Zbl 0401.90104

90C48 Programming in abstract spaces
46B99 Normed linear spaces and Banach spaces; Banach lattices
Full Text: DOI
[1] Aubin, J. P., and Clarke, F. H.: Multiplicateurs de Lagrange en optimisation non convexe et applications,C. R. Acad. Sc. Paris, Série A, 285, 451-454 (1977). · Zbl 0365.90105
[2] Day, M. M.:Normed linear spaces, 3rd. edition, Springer-Verlag, Berlin, 1973. · Zbl 0268.46013
[3] Dugundji, J.:Topology, Allyn and Bacon, Boston-London-Sydney-Toronto, 1966.
[4] Gauvin, J., and Tolle, J. W.: Differential stability in nonlinear programming,SIAM Journal of Control and Optimization 15, 294-311 (1977). · Zbl 0374.90062 · doi:10.1137/0315020
[5] Krein, M. G., and Rutman, M.: Linear operators leaving invariant a cone in a Banach space,Uspehi Mat. Nauk. SSSR, 3, 3-95 (1948). · Zbl 0030.12902
[6] Kurcyusz, S.: On the existence and nonexistence of Lagrange multipliers in Banach spaces,Journal of Optimization Theory and Applications, 20, 81-110 (1976). · Zbl 0309.49010 · doi:10.1007/BF00933349
[7] Robinson, S. M.: Normed convex processes,Transactions of the American Mathematical Society, 174, 127-140 (1972). · doi:10.1090/S0002-9947-1972-0313769-9
[8] Robinson, S. M.: Stability theory for systems of inequalities in nonlinear programming, part II: differentiable nonlinear systems,SIAM Journal of Numerical Analysis, 13, 497-513 (1976). · Zbl 0347.90050 · doi:10.1137/0713043
[9] Schaefer, H. H.:Topological vector spaces, MacMillan, New York, 1966. · Zbl 0141.30503
[10] Zowe, J.: A remark on a regularity assumption for the mathematical problem in Banach spaces,Journal of Optimization Theory and Applications, 25 (1978). · Zbl 0362.90113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.