×

zbMATH — the first resource for mathematics

Ergodic theorems in demography. (English) Zbl 0401.60065

MSC:
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
92D25 Population dynamics (general)
15B48 Positive matrices and their generalizations; cones of matrices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Krishna B. Athreya and Samuel Karlin, On branching processes with random environments. I. Extinction probabilities, Ann. Math. Statist. 42 (1971), 1499 – 1520. · Zbl 0228.60032 · doi:10.1214/aoms/1177693150 · doi.org
[2] Garrett Birkhoff, Lattice theory, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. · Zbl 0153.02501
[3] Joel E. Cohen, Ergodicity of age structure in populations with Markovian vital rates. I. Countable states, J. Amer. Statist. Assoc. 71 (1976), no. 354, 335 – 339. · Zbl 0338.60049
[4] Joel E. Cohen, Ergodicity of age structure in populations with Markovian vital rates. II. General states, Advances in Appl. Probability 9 (1977), no. 1, 18 – 37. · Zbl 0357.92021 · doi:10.2307/1425814 · doi.org
[5] Joel E. Cohen, Ergodicity of age structure in populations with Markovian vital rates. III. Finite-state moments and growth rate. An illustration, Advances in Appl. Probability 9 (1977), no. 3, 462 – 475. · Zbl 0376.60074 · doi:10.2307/1426109 · doi.org
[6] Joel E. Cohen, Derivatives of the spectral radius as a function of non-negative matrix elements, Math. Proc. Cambridge Philos. Soc. 83 (1978), no. 2, 183 – 190. · Zbl 0374.15007 · doi:10.1017/S0305004100054438 · doi.org
[7] Joel E. Cohen, Long-run growth rates of discrete multiplicative processes in Markovian environments, J. Math. Anal. Appl. 69 (1979), no. 1, 243 – 251. · Zbl 0406.60076 · doi:10.1016/0022-247X(79)90191-4 · doi.org
[8] Joel E. Cohen, The cumulative distance from an observed to a stable age structure, SIAM J. Appl. Math. 36 (1979), no. 1, 169 – 175. · Zbl 0405.92014 · doi:10.1137/0136015 · doi.org
[9] Joel E. Cohen, Comparative statics and stochastic dynamics of age-structured populations, Theoret. Population Biol. 16 (1979), no. 2, 159 – 171. · Zbl 0422.92016 · doi:10.1016/0040-5809(79)90011-X · doi.org
[10] Lloyd Demetrius, Demographic parameters and natural selection, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4645 – 4647. · Zbl 0303.62075
[11] H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Statist. 31 (1960), 457 – 469. · Zbl 0137.35501 · doi:10.1214/aoms/1177705909 · doi.org
[12] Martin Golubitsky, Emmett B. Keeler, and Michael Rothschild, Convergence of the age structure: applications of the projective metric, Theoret. Population Biology 7 (1975), 84 – 93. · Zbl 0297.92014
[13] Leo A. Goodman, Stochastic models for the population growth of the sexes, Biometrika 55 (1968), 469 – 487. · Zbl 0167.48701 · doi:10.1093/biomet/55.3.469 · doi.org
[14] David Griffeath, Uniform coupling of non-homogeneous Markov chains, J. Appl. Probability 12 (1975), no. 4, 753 – 762. · Zbl 0322.60061
[15] J. Hajnal, On products of non-negative matrices, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 3, 521 – 530. · Zbl 0333.15013 · doi:10.1017/S030500410005252X · doi.org
[16] Frank Hoppensteadt, Mathematical theories of populations: demographics, genetics and epidemics, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. Regional Conference Series in Applied Mathematics. · Zbl 0304.92012
[17] Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. · Zbl 0342.47009
[18] Nathan Keyfitz, Population waves, Population dynamics (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1972) Academic Press, New York, 1972, pp. 1 – 38.
[19] Nathan Keyfitz , Mathematical demography, Springer-Verlag, Berlin-New York, 1977. Selected papers; Biomathematics, Vol. 6. · Zbl 1060.91519
[20] P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika 35 (1948), 213 – 245. · Zbl 0034.23303 · doi:10.1093/biomet/35.3-4.213 · doi.org
[21] Donald Ludwig, Stochastic population theories, Springer-Verlag, Berlin-New York, 1974. Notes by Michael Levandowsky; Lecture Notes in Biomathematics, Vol. 3. · Zbl 0409.92011
[22] George W. Mackey, Ergodic theory and its significance for statistical mechanics and probability theory, Advances in Math. 12 (1974), 178 – 268. · Zbl 0326.60001 · doi:10.1016/S0001-8708(74)80003-4 · doi.org
[23] Chris Rorres, Stability of an age specific population with density dependent fertility, Theoret. Population Biology 10 (1976), no. 1, 26 – 46. · Zbl 0336.92019
[24] E. Seneta, Non-negative matrices, Halsted Press [A division of John Wiley & Sons], New York, 1973. An introduction to theory and applications. · Zbl 0278.15011
[25] Nathan Keyfitz , Mathematical demography, Springer-Verlag, Berlin-New York, 1977. Selected papers; Biomathematics, Vol. 6. · Zbl 1060.91519
[26] Walter L. Smith, Necessary conditions for almost sure extinction of a branching process with random environment, Ann. Math. Statist 39 (1968), 2136 – 2140. · Zbl 0176.47602 · doi:10.1214/aoms/1177698045 · doi.org
[27] Walter L. Smith and William E. Wilkinson, Branching processes in Markovian environments, Duke Math. J. 38 (1971), 749 – 763. · Zbl 0283.60087
[28] Z. M. Sykes, Some stochastic versions of the matrix model for population dynamics, J. Amer. Statist. Assoc. 64 (1969), no. 325, 111 – 130. · Zbl 0175.18004
[29] S. M. Ulam, Adventures of a mathematician, Charles Scribner’s Sons, New York, 1976. · Zbl 0352.01009
[30] Kenneth M. Weiss and Paul A. Ballonoff , Demographic genetics, Dowden, Hutchinson & Ross, Inc., Stroudsburg, Pa.; distributed by Halsted Press [John Wiley & Sons, Inc.], New York, 1975. Benchmark Papers in Genetics, Vol. 3. · Zbl 0346.92013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.