×

zbMATH — the first resource for mathematics

Singularity structure of the two-point function in quantum field theory in curved spacetime. (English) Zbl 0401.35065

MSC:
35L10 Second-order hyperbolic equations
58J99 Partial differential equations on manifolds; differential operators
83C99 General relativity
46N99 Miscellaneous applications of functional analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Christensen, S.M.: Vacuum expectation value of the stress tensor in an arbitrary curved background: The covariant point separation method. Phys. Rev. D14, 2490 (1976) · doi:10.1103/PhysRevD.14.2490
[2] Christensen, S.M.: Regularization, renormalization, and covariant geodesic point separation. Phys. Rev. D17, 946 (1978) · doi:10.1103/PhysRevD.17.946
[3] Davies, P.C.W., Fulling, S.A., Christensen, S.M., Bunch, T.S.: Energy-momentum tensor of a massless scalar quantum field in a Robertson-Walker universe. Ann. Phys. (N. Y.)109, 108 (1977) · Zbl 0362.53019 · doi:10.1016/0003-4916(77)90167-1
[4] Bunch, T.S., Christensen, S.M., Fulling, S.A.: Massive quantum field theory in two-dimensional Robertson-Walker spacetimes. Phys. Rev. D (in press) · Zbl 0362.53019
[5] Adler, S.L., Lieberman, J., Ng, Y.J.: Regularization of the stress-energy tensor for vectors and scalar particles propagating in a general background metric. Ann. Phys. (N.Y.)106, 279 (1977) · doi:10.1016/0003-4916(77)90313-X
[6] Wald, R.M.: The back reaction effect in particle creation in curved spacetime. Commun. math. Phys.54, 1 (1977) · Zbl 1173.81328 · doi:10.1007/BF01609833
[7] Wald, R.M.: Trace anomaly of a conformally invariant quantum field in curved spacetime. Phys. Rev. D17, 1477 (1978) · doi:10.1103/PhysRevD.17.1477
[8] Hadamard, J.: Lectures on Cauchy’s problem in linear partial differential equations. New Haven: Yale University Press 1923 · JFM 49.0725.04
[9] DeWitt, B.S., Brehme, R.W.: Radiation damping in a gravitational field. Ann. Phys. (N.Y.)9, 220 (1960) · Zbl 0092.45003 · doi:10.1016/0003-4916(60)90030-0
[10] Garabedian, P.R.: Partial differential equations. New York: Wiley 1964 · Zbl 0124.30501
[11] Hawking, S.W., Ellis, G.F.R.: The large scale structure of the universe. Cambridge: University Press 1973 · Zbl 0265.53054
[12] Bjorken, J.D., Drell, S.D.: Relativistic quantum fields, Appendix C. New York: McGraw-Hill 1965 · Zbl 0184.54201
[13] Ford, L., Parker, L.: Infrared divergences in a class of Robertson-Walker universes. Phys. Rev. D16, 245 (1977) · doi:10.1103/PhysRevD.16.245
[14] Powers, R.T.: Self-adjoint algebras of unbounded operators. Commun. math. Phys.21, 85 (1971), Section VI · Zbl 0214.14102 · doi:10.1007/BF01646746
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.