×

Asymptotic properties of solutions to some three-dimensional wave problems. (English) Zbl 0401.35023


MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35B40 Asymptotic behavior of solutions to PDEs

Citations:

Zbl 0349.35020
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] V. M. Babich and N. S. Grigor’eva, ?A three-dimensional analogue of the Watson method; nonspectral singularities of Green’s function and the asymptotic behavior of nonstationary problem as t??,? in: Theory of Diffraction and Wave Propagation, Sixth All-Union Symposium on Diffraction and Wave Propagation, Vol. 2, Erevan (1973), pp. 64?68.
[2] V. M. Babich and N. S. Grigor’eva, ?On the analytic continuation to the second sheet of the resolvent of exterior three-dimensional problems for the Laplace operator,? Funkts. Anal. Ego Prilozhen.8, No. 1, 71?72 (1974). · Zbl 0349.46034
[3] B. R. Vainberg, ?The behavior of the solution of the Cauchy problem for a hyperbolic equation as t??,? Mat. Sb.,78(120), No. 4, 542?578 (1969).
[4] V. G. Maz’ya and A. A. Plamenevskii, ?On the asymptotic behavior of solutions of differential equations in Hubert space,? Izv. Akad. Nauk SSSR, Ser. Mat.,36, No. 5, 1080?1133 (1972).
[5] P. Lax and R. Phillips, Scattering Theory, Academic Press, New York (1967).
[6] D. M. Eidus, ?On the limiting absorption principle,? Dokl. Akad. Nauk SSSR,125, No. 3, 508?511 (1959).
[7] D. M. Eidus, ?On the limiting absorption principle,? Mat. Sb.,57 (99), No. 1, 13?44 (1962).
[8] N. D. Kazarinoff and R. K. Ritt, ?Scalar diffraction theory and turning-point problems,? Arch. Rat. Mech. Anal.,5, No. 2, 177?186 (1960). · Zbl 0101.21505
[9] L. A. Muravei, ?Decay of solutions of the second exterior boundary value problem for the wave equation with two spatial variables,? Dokl. Akad. Nauk SSSR,193, No. 5, 996?999 (1970).
[10] V. M. Babich, ?On me asymptotic behavior of the Green functions of some wave problems,? Dokl. Akad. Nauk SSSR,199, No. 4, 743?746 (1971).
[11] V. P. Mikhailov, ?On the limiting amplitude principle,? Dokl. Akad. Nauk SSSR,159, No. 4, 750?752 (1964).
[12] T. I. Zelenyak and V. P. Mikhailov, ?The asymptotic behavior of solutions of some boundary value problems of mathematical physics as t??,? in: Partial Differential Equations [in Russian], Nauka, Moscow (1970), pp. 96?118.
[13] V. M. Babich, ?On the asymptotic behavior of the Green functions of some wave problems. I,? Mat. Sb.,86 (128), 518?537 (1971).
[14] V. M. Babich, ?On the asymptotic behavior of the Green functions of some wave problems. II,? Mat. Sb.,87 (129), 44?57 (1972).
[15] I. M. Gelfand and G. E. Shilov, Generalized Functions. Properties and Operations, Academic Press (1964).
[16] C. S. Morawetz and D. Ludwig, ?The generalized Huyghen’s principle for reflecting bodies,? Commun. Pure Appl. Maul.,22, 189?205 (1969). · Zbl 0167.10102
[17] R. S. Phillips, ?A remark on the preceding paper of C. S. Morawetz and D. Ludwig, ? Commun. Pure Appl. Math.,22, 207?211 (1969). · Zbl 0167.10103
[18] P. D. Lax and R. S. Phillips, ?Scattering theory,? Bull. Am. Mam. Soc.,70, 130?142 (1964). · Zbl 0117.09104
[19] P. D. Lax and R. S. Phillips, ?The wave equation in exterior domains,? Bull. Am. Math. Soc.,68, 47?49 (1962). · Zbl 0103.06401
[20] B. R. Vainberg, ?On operator eigenfunctions corresponding to the poles of the analytic continuation of the resolvent across the continuous spectrum,? Mat. Sb.,87 (129), 293?308 (1972). · Zbl 0252.35050
[21] B. R. Vainberg, ?On the analytic properties of the resolvent for a class of operator pencils,? Mat. Sb.,77 (119), 259?296 (1968).
[22] A. F. Filippov, ?Justification of the short-wave asymptotics in the three-dimensional diffraction problem,? Sib. Mat. Zh.,10, No. 6, 1406?1421 (1969). · Zbl 0183.11004
[23] F. Ursell, ?On the short-wave asymptotic theory of the wave equation (?+k2)?=0,? Proc. Cambr. Phil. Soc.,53, No. 1, 115?133 (1957).
[24] V. M. Babich, ?On the short-wave asymptotics of Green’s function for the Helmholtz equation,? Mat. Sb.,65 (107), No. 4, 576?630 (1964).
[25] V. D. Andronov, ?Some applications of Ursell’s method in short-wave problems for the Helmholtz equation,? Dissertation, Leningrad State Univ. (1965).
[26] F. Ursell, ?On the rigorous foundation of short-wave asymptotics,? Proc. Cambr. Phil. Soc.,62, No. 2, 227?244 (1966). · Zbl 0142.45503
[27] N. S. Grigor’eva, ?Ursell’s approach for obtaining a priori estimates of the solution of the Neumann problem for the Helmholtz equation,? Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,42, 85?155 (1974).
[28] C. S. Morawetz and D. Ludwig, ?An inequality for the reduced wave operator and the justification of geometrical optics,? Commun. Pure Appl. Math.,21, No. 2, 187?203 (1968). · Zbl 0157.18701
[29] V. M. Babich, ?The procedure of D. Ludwig and of the boundary layer in the problem of diffraction by a smooth body,? Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,27, 17?33 (1972).
[30] V. M. Babich, ?On the rigorous justification of the short-wave approximation in the three-dimensional case,? Zap. Nauchn. Sem. Leningrd. Otd. Mat. Inst.,34, 23?51 (1973).
[31] V. S. Buslaev, ?Potential theory and geometrical optics,? Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,22, 175?180 (1971). · Zbl 0284.35017
[32] I. M. Gelfand and G. E. Shilov, Functions and Generalized Function Spaces, Academic Press (1968).
[33] L. Schwartz, Théorie des Distributions, Paris (1951).
[34] N. M. Gunter, Potential Theory and Its Applications of Mathematical Physics, Ungar (1967).
[35] O. A. Ladyzhenskaya, The Mixed Problem for Hyperbolic Equations fin Russian], Moscow (1953).
[36] V. M. Babich and N. S. Grigor’eva, ?Free short-wave diffraction from an oblate spheroid,? Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,42, 12?59 (1974).
[37] V. M. Babich and N. S. Grigor’eva, ?Uniform asymptotic expansions of functions related to an oblate spheroid,? Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,34, 6?23 (1973).
[38] F. G. Leppington, ?Creeping waves in the shadow of an elliptic cylinder,? J. Inst. Math. Appl.,3, No. 4, 388?402 (1967). · Zbl 0153.56503
[39] B. D. Sleeman, ?On diffraction at short wavelengths by a prolate spheroid,? J. Inst. Math. Appl.,5, No. 4, 432?442 (1969). · Zbl 0189.10203
[40] D. Ludwig, ?Uniform asymptotic expansion of the field scattered by a convex object at high frequencies,? Commun. Pure Appl. Math.,20, No. 1, 103?138 (1967). · Zbl 0154.12802
[41] M. V. Fedoryuk, ?The method of stationary phase for multidimensional integrals,? Zh. Vychisl. Mat. Mat. Fiz.,2, No. 1, 145?150 (1962). · Zbl 0122.12401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.