×

zbMATH — the first resource for mathematics

Acceleration waves and second sound in a perfect fluid. (English) Zbl 0399.76078

MSC:
76Q05 Hydro- and aero-acoustics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] I. Müller, Arch. Rational Mech. Anal. 40 (1971), 1–36. · Zbl 0229.73003
[2] I. Müller, Arch. Rational Mech. Anal. 41 (1971), 319–332.
[3] A.E. Green & N. Laws, Arch. Rational Mech. Anal. 45 (1972), 47–53.
[4] C. Truesdell, J. Rational Mech. Anal. 2 (1953), 643–741.
[5] A.E. Green, Mathematika 19 (1972), 69–75. · Zbl 0351.73037
[6] J. NItsche, J. Rational Mech. Anal. 2 (1953), 291–296.
[7] T.Y. Thomas, J. Math. Mech. 6 (1957), 455–469.
[8] E. Varley & E. Cumberbatch, J. Inst. Maths. Applies. 1 (1965), 101–112.
[9] R.M. Bowen & R.L. Rankin, Arch. Rational Mech. Anal. 51 (1973), 261–277.
[10] P.J. Chen, Arch. Rational Mech. Anal. 30 (1968), 81–89. · Zbl 0165.28301
[11] P.J. Chen, Growth and decay of waves in solids, article in, ”Handbuch der Physik”, vol. VIa/3 (Springer-Verlag, Berlin-Heidelberg-New York, 1973).
[12] G.G. Stokes, Phil. Mag. (4th Ser.) 1 (1851), 305–317.
[13] G.G. Stokes, Trans. Camb. Phil. Soc. 8 (1845), 287–319.
[14] M.J. Stefan, Sitzber. Akad. Wiss. Wien II 53 (1866), 529–537.
[15] G. Kirchhoff, Ann. der Physik und Chemie 134 (1868), 177–193.
[16] P. Biquard, Ann. de Physique (11th Ser.) 6 (1936), 195–304.
[17] Lord Rayleigh, The theory of sound vol. 2 (Second edition: Macmillan and Co. Ltd., London, 1896). · JFM 27.0701.05
[18] M.E. Gurtin & A.C. Pipkin, Arch. Rational Mech. Anal. 31 (1968), 113–126. · Zbl 0164.12901
[19] P.J. Chen, Arch. Rational Mech. Anal. 35 (1969), 1–15. · Zbl 0186.42702
[20] P.J. Chen, ZAMP 20 (1969), 448–453. · Zbl 0175.52101
[21] K.A. Lindsay & B. Straughan, ZAMP 27 (1976), 653–662. · Zbl 0374.35024
[22] M. Kranys, J. Phys. A: Math. Gen. 10 (1977), 689–709. · Zbl 0357.73009
[23] R. Courant & D. Hilbert, Methods of Mathematical Physics, vol. II (Interscience publication, New York-London, 1962). · Zbl 0099.29504
[24] A.R. Elcrat, Int. J. Engng. Sci. 15 (1977), 29–34. · Zbl 0347.76048
[25] B.R. Seymour & M.P. Mortell, Nonlinear geometrical acoustics, article in, ”Mechanics Today”, vol. 2 (Pergamon 1975).
[26] G.B. Whitham, Linear and nonlinear waves, (Wiley-Interscience publication, New York-London-Sydney-Toronto, 1974). · Zbl 0373.76001
[27] T.W. Wright, Arch. Rational Mech. Anal. 50 (1973), 237–277. · Zbl 0264.73003
[28] G.G. Stokes, Report of the twenty-seventh meeting of the British association for the advancement of science (1857), 22–23.
[29] P.J. Chen & T.W. Wright, Meccanica 10 (no. 4) (1975), 232–238. · Zbl 0377.76051
[30] R.M. Bowen, P.J. Chen & M.F. McCarthy, J. Elasticity 6 (1976), 369–382. · Zbl 0337.76027
[31] T.W. Wright, Q. Jl. Mech. Appl. Math. 29 (1976), 311–324. · Zbl 0375.76062
[32] K.A. Lindsay, On the use of entropy inequalities, D. Phil. Thesis, Merton College, Oxford, 1973. · Zbl 0289.76056
[33] J.C. Maxwell, Phil. Trans. Roy. Soc. Lond. 170 (1879), 231–256. · JFM 11.0777.01
[34] E. Ikenberry & C. Truesdell, J. Rational Mech. Anal. 5 (1956), 1–54.
[35] C. Truesdell, Rational Thermodynamics, (McGraw-Hill, New York-London, 1969).
[36] R.C. Batra, Arch. Rational Mech. Anal. 53 (1974), 359–367.
[37] Meixner, Arch. Rational Mech. Anal. 57 (1974), 281–290.
[38] C. Truesdell & R. Toupin, The classical field theories, article in, ”Handbuch der Physik”, vol. III/1 (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960).
[39] J.W. Nunziato & E.K. Walsh, Arch. Rational Mech. Anal. 64 (1977), 299–316. · Zbl 0366.73028
[40] L.D. Landau & E.M. Lifshitz, Statistical physics (Pergamon Press, London-Paris, 1958).
[41] J. Otto, Thermische Zustandsgrößen der Gase bei mittleren und kleinen Drucken, article in, ”Handbuch der Experimentalphysik”, vol. VIII/2 (Akademische Verlags-gesellschaft M.B.H. Leipzig, 1929).
[42] T.Y. Thomas, Concepts from tensor analysis and differential geometry (Academic Press, New York-London, 1961).
[43] K.A. Lindsay & B. Straughan, Propagation of mechanical and temperature acceleration waves in thermoelastic materials, to be published, 1978. · Zbl 0405.73087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.