×

zbMATH — the first resource for mathematics

A generalization of the Kermack-McKendrick deterministic epidemic model. (English) Zbl 0398.92026

MSC:
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bailey, N.T.J., The mathematical theory of infectious diseases and its applications, (1975), Charles Griffin London and High Wycombe · Zbl 0115.37202
[2] Capasso, V., Global solution for a diffusive nonlinear deterministic epidemic model, SIAM J. appl. math., Vol. 35, No. 2, (1978), in press · Zbl 0415.92018
[3] V. Capasso and S.L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in Bari, Italy, to appear. · Zbl 0526.92014
[4] Capasso, V.; Grosso, E.; Serio, G., I modelli matematici nella indagine epidemiologica. I. applicazione all’epidemia di colera verificatasi in Bari nel 1973, Annali sclavo, 19, 193-208, (1977)
[5] Corduneanu, C., Principles of differential and integral equations, (1971), Allyn and Bacon Boston · Zbl 0208.10701
[6] Hahn, W., Stability of motion, (1967), Springer New York · Zbl 0189.38503
[7] Hethcote, H.W., Qualitative analysis of communicable disease models, Math. biosci., 28, 335-356, (1976) · Zbl 0326.92017
[8] Kermack, W.O.; McKendrick, A.G., Contributions to the mathematical theory of epidemics, Proc. roy. soc. ser. A, 115, 700-721, (1927), part I · JFM 53.0517.01
[9] Kermack, W.O.; McKendrick, A.G., Contributions to the mathematical theory of epidemics, Proc. roy. soc. ser. A, 138, 55-83, (1932), part II · Zbl 0005.30501
[10] Lasalle, J.P., The stability of dynamical systems, (1977), SIAM Philadelphia · Zbl 0538.34033
[11] S.L. Paveri-Fontana and G. Serio, A class of deterministic mathematical infectious diseases, to appear.
[12] Sansone, G.; Conti, R., Equazioni differenziali non lineari, (1956), Edizioni Cremonese Roma · Zbl 0075.26803
[13] Struble, R.A., Nonlinear differential equations, (1962), McGraw-Hill New York · Zbl 0124.04904
[14] Waltman, P., Deterministic threshold models in the theory of epidemics, () · Zbl 0293.92015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.