zbMATH — the first resource for mathematics

Mutually synchronized relaxation oscillators as prototypes of oscillating systems in biology. (English) Zbl 0398.92005

92B05 General biology and biomathematics
Full Text: DOI
[1] Aschoff, J. (ed.): Crcadian clocks. Amsterdam: North-Holland 1965
[2] Auchmuty, J. F. G., Nicolis, G.: Bifurcation analysis of reaction diffusion equations–III, chemical oscillations, Bull. Math. Biol. 38, 325–350 (1976) · Zbl 0375.92006
[3] Brown, B. N., Duthie, H. L., Horn, A. R., Smallwood, R. H.: A linked oscillator model of electrical activity of human small intestine, Am. J. Physiol, 229, 384–388 (1975)
[4] Brown, F. A., Hastings, J. W., Palmer, J. D.: The biological clock: two views. New York: Academic Press 1970
[5] Cohen, M. H.,: Models of clocks and maps in developing organisms, in: Lectures on mathematics in the life sciences vol 3: American Mathematical Society, Providence, Rhode Island, 1972
[6] Cole, J. D.: Perturbation methods in applied mathematics. Blaisdell, Massachusetts: Ginn 1968 · Zbl 0162.12602
[7] Cronin, J.: Some mathematics of biological oscillations, SIAM Review, 19, 100–138 (1977) · Zbl 0366.92001 · doi:10.1137/1019007
[8] Diekmann, O., Temme, N. M. (eds.): Nonlinear diffusion problems, Amsterdam: Mathematical Centre 1976 · Zbl 0357.35002
[9] Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membranes, Biophysical J. 1, 445–466 (1961) · doi:10.1016/S0006-3495(61)86902-6
[10] Glansdorff, P., Prigogine, J.: Thermodynamic theory of structure stability and fluctuations. New York: Wiley-Interscience 1971 · Zbl 0246.73005
[11] Goebber, F., Seelig, F. F.: Conditions for the application of the steady state approximation to systems of differential equations, J. Math. Biol. 2, 76–86 (1975) · Zbl 0316.65013
[12] Goodwin, B., Cohen, M.: A phase shift model for the spatial and temporal organization of developing systems, J. Theor. Biol. 25, 49–107 (1969) · doi:10.1016/S0022-5193(69)80017-2
[13] Grasman, J., Jansen, M. J. W.: Mutually synchronized relaxation oscillations. Mathematical Centre, Report TN 82/pp76 (1976) · Zbl 0398.92005
[14] De Haan, R. L., Hikarow, R.: Synchronization of pulsation rates in isolated cardiac myocytes, Exp. Cell. Res. 70, 214–220 (1972) · doi:10.1016/0014-4827(72)90199-1
[15] Hale, J. K.: Ordinary differential equations. New York: Wiley-Interscience 1969 · Zbl 0186.40901
[16] Heineken, F. G., Tsuchiya, H. M., Aris, R.: On the mathematical status of the pseudosteady state hypothesis of biochemical kinetics, Math. Biosci. 1, 95–113 (1967) · doi:10.1016/0025-5564(67)90029-6
[17] Hirsch, M. W., Smale, S.: Differential equations, dynamical systems and linear algebra. New York: Academic Press 1974 · Zbl 0309.34001
[18] Hoppensteadt, F.: Properties of solutions of ordinary differential equations with small parameters, Comm. Pure and Appl. Math., Vol. 24, 807–840 (1971) · Zbl 0235.34120 · doi:10.1002/cpa.3160240607
[19] Jansen, M. J. W.: Synchronization of weakly coupled relaxation oscillators, Math. Centre Report, TW 180/78 (1978) · Zbl 0417.34074
[20] Kuramoto, Y.: Self entrainment of a population of coupled nonlinear oscillators, in: Int. Symp. on Math. Probl. in theor. physics, H. Araki (ed.), Lecture Notes in Physics 39, 420–422. Berlin Göttingen, Heidelberg: Springer 1975 · Zbl 0335.34021
[21] Lasalle, J.: Relaxation oscillations, Quart. J. Appl. Math. 1–19 (1949) · Zbl 0032.31703
[22] Linkens, D. A.: Analytical solution of large numbers of mutually coupled nearly sinusoidal oscillators, IEEE Trans. Circ. Syst. CAS-21, 294–300 (1974)
[23] Linkens, D. A., Rimmer, S. J., Datardina, S. P.: Spectral analysis of coupled non-linear oscillators under modulation conditions with reference to intestinal modellings, Comput. Biol. Med. 8, 125–137 (1978) · doi:10.1016/0010-4825(78)90003-3
[24] Mayeri, E.: A relaxation oscillator description of the burst generating mechanism of the cardiac ganglion of the lobster, J. Gen. Physiol. 62, 473–488 (1973) · doi:10.1085/jgp.62.4.473
[25] Mishchenko, E. F., Pontryagin, L. S.: Derivation of some asymptotic estimates for solutions of differential equations with a small parameter in the derivatives (in Russian). Izv. Akad. Nauk. SSSR, ser. mat., 23, 643–660 (1959) · Zbl 0090.06105
[26] Mishchenko, E. F.: Asymptotic calculation of periodic solutions of systems of differential equations containing small parameters in the derivatives, Izv. Akad. Nauk SSSR, ser. mat., 21 (1957), 627–654. AMS Translations, series 2, Vol. 18, 199–230 (1961)
[27] Moe, G. K., Rheinboldt, W. C., Abildskov, J. A.: A computer model of atrial fibrillation, Am. Heart J. Vol. 67, 200–220 (1964) · doi:10.1016/0002-8703(64)90371-0
[28] Othmer, H. G.: Current problems in pattern formation, in: Lectures on mathematics in the life science, vol. 9. (American Mathematical Society, Providence, Rhode Island, 1977) · Zbl 0398.92003
[29] Pavlidis, T.: Populations of biochemical oscillators as circadian clocks, J. Theor. Biol. 33, 319–338 (1971) · doi:10.1016/0022-5193(71)90070-1
[30] Pavlidis, T.: Biological oscillators; their mathematical analysis. New York: Academic Press 1973
[31] Peskin, C. S.: Mathematical aspects of heart physiology (Courant Institute of Mathematical Sciences, New York University), (1975) · Zbl 0301.92001
[32] Pol, B. van der: On ’relaxation oscillations’. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science (7), 2, 978–992 (1926). Also in: H. Bremmer and C. J. Bouwkamp (eds.), Balthasar Van der Pol: Selected scientific papers. Amsterdam: North-Holland pub. cy. 1960 · JFM 52.0450.05
[33] Pol, B. van der, Mark, J. van der: The heartbeat considered as a relaxation oscillation and an electrical model of the heart, Phil. Mag. Vol. VI, 763–773 (1928), also in: Balthasar Van der Pol selected scientific papers (see [32])
[34] Pontryagin, L. S.: Asymptotic behaviour of solutions of systems of differential equations with a small parameter in the higher derivatives, Izv. Akad. Nauk SSSR, Ser. mat. 21, 605–626 (1957). AMS Translations, series 2, Vol. 18, 295–320 (1961) · Zbl 0078.08003
[35] Sachs, H. G., De Haan, R. L.: Embryonic myocardial cell aggregates: volume and pulsation rate, Developmental Biology, 30, 233–240 (1973) · doi:10.1016/0012-1606(73)90064-X
[36] Stoker, J. J.: Nonlinear vibrations. New York: Interscience 1950 · Zbl 0035.39603
[37] Tikhonov, A. N.: Systems of differential equations with small parameters in the derivatives (in Russian), Mat. Sbornik, vol. 31, (73), 575–586 (1952)
[38] Torre, V.: Synchronization of nonlinear biochemical oscillators coupled by diffusion, Biol. Cybernetics 17, 137–144 (1975) · Zbl 0293.92004 · doi:10.1007/BF00364162
[39] Wiener, N.: Nonlinear problems in random theory. Cambridge, Mass.: MIT Press 1958 · Zbl 0121.12302
[40] Winfree, A. T.: Biological rhythms and the behaviour of populations of coupled oscillators, J. Theor. Biol. 16, 15–42 (1967) · doi:10.1016/0022-5193(67)90051-3
[41] Zhabotinski, A. M., Zaikin, A. N.: Autowave processes in a distributed chemical system, J. Theor. Biol. 40, 45–61 (1973) · doi:10.1016/0022-5193(73)90164-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.