zbMATH — the first resource for mathematics

Steady flow of a micropolar fluid due to a rotating disc. (English) Zbl 0398.76030

76D99 Incompressible viscous fluids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI
[1] T. Ariman, M. A. Turk and N. D. Sylvester: On steady and pulsatile flow of blood, J. Appl. Mech. 41 (1974) 1-7. · Zbl 0356.76080
[2] T. Ariman, M. A. Turk and N. D. Sylvester: Applications of microcontinuum fluid mechanics, Int. J. Engng. Sci. 12 (1974) 273-294. · Zbl 0273.76003
[3] W. G. Cochran: The flow due to a rotating disc, Proc. Camb. Phil. Soc. 30 (1934) 365-375. · JFM 60.0729.08
[4] A. C. Eringen: Theory of micropolar fluids, J. Math Mech. 16 (1966) 1-18.
[5] C. F. Gerald: Applied numerical analysis, Addison-Wesley Publishing Company, Reading, Massachusetts, 1974.
[6] G. S. Guram and A. C. Smith: Rectilinear pipe-flow of a micropolar fluid, Utilitas Mathematica 9 (1976) 147-160. · Zbl 0339.76005
[7] Th.Von Kármán: Über laminare und turbulente Reibung, Zeitschr. j. angew. Math. u. Mech. 1 (1921) 233-252. · JFM 48.0968.01
[8] J. D. Lee and A. C. Eringen: Wave propagation in nematic liquid crystals, J. Chem. Phys. 54 (1971) 5027-5034.
[9] W. E. Milne: Numerical solution of differential equations, John Wiley & Sons Inc., New York, 1953.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.