zbMATH — the first resource for mathematics

Über Macaulayfizierung. (On macaulayfication). (German) Zbl 0398.14002

14E15 Global theory and resolution of singularities (algebro-geometric aspects)
14B15 Local cohomology and algebraic geometry
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
Full Text: DOI EuDML
[1] Brodmann, M.: A macaulayfication of unmixed domains. J. Algebra44, 221-234 (1977) · Zbl 0348.13013 · doi:10.1016/0021-8693(77)90176-4
[2] Faltings, G.: Zur Existenz dualisierender Komplexe. Math. Z. MZ.162, 75-86 (1978) · Zbl 0379.13007 · doi:10.1007/BF01437825
[3] Grothendieck, A.: SGA 2. Amsterdam: North Holland 1968
[4] Grothendieck, A.: EGA 3. Publ. Math.11, 17 (1961)
[5] Grothendieck, A.: Local cohomology. Lecture Notes in Mathematics, 41. Berlin-Heidelberg-New York: Springer 1967 · Zbl 0185.49202
[6] Grothendieck, A.: EGA 4, 2. Teil. Publ. Math.24, (1965)
[7] Matsumura, H.: Commutative algebra. New York: Benjamin 1970 · Zbl 0211.06501
[8] Serre, J.P.: Algèbre locale. Lecture Notes in Mathematics, 11. Berlin-Heidelberg-New York: Springer 1965 · Zbl 0142.28603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.