×

zbMATH — the first resource for mathematics

Stability regions and transition phenomena for harvested predator-prey systems. (English) Zbl 0397.92019

MSC:
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albrecht, F., Gatzke, H., Haddad, A., Wax, N.: The dynamics of two interacting populations. J. Math. Analysis and Appl. 46, 658-670 (1974) · Zbl 0281.92012 · doi:10.1016/0022-247X(74)90267-4
[2] Brauer, F.: Destabilization of predator-prey systems under enrichment. Int. J. Control 23, 541-552 (1976) · Zbl 0319.92012 · doi:10.1080/00207177608922180
[3] Brauer, F.: Boundedness of solutions of predator-prey systems. Theor. Pop. Biol. to appear, 1979 · Zbl 0399.92015
[4] Brauer, F., Soudack, A. C., Jarosch, H. S.: Stabilization, and destabilization of predator-prey systems under harvesting and nutrient enrichment. Int. J. Control 23, 553-573 (1976) · Zbl 0317.92003 · doi:10.1080/00207177608922181
[5] Bulmer, M. G.: The theory of prey-predator oscillations. Theor. Pop. Biol. 9, 137-150 (1976) · Zbl 0352.92015 · doi:10.1016/0040-5809(76)90041-1
[6] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations. New York: McGraw-Hill, 1955 · Zbl 0064.33002
[7] Conley, C. C.: Isolated Invariant Sets and the Morse Index. Conference Board on Mathematical Sciences, 1978 · Zbl 0397.34056
[8] Holling, C. S.: The functional response of predators to prey density and its rate in mimicry and population regulation. Mem. Ent. Soc. Canada 45, 1-73 (1965)
[9] Kolmogorov, A. N.: Sulla teoria di Volterra della lotta per l’esistenza. Giorn. Inst. Ital. Attuari 7, 74-80 (1936) · JFM 62.1263.01
[10] Kopell, N., Howard, L. N.: Bifurcations and trajectories joining critical points. Adv. in Math. 18, 306-358 (1975) · Zbl 0361.34026 · doi:10.1016/0001-8708(75)90048-1
[11] Ludwig, D., Jones, D. S., Holling, C. S.: Qualitative analyses of insect outbreak systems: The spruce budworm and forest. J. Animal Ecology 47, 315-332 (1978) · doi:10.2307/3939
[12] May, R. M.: Stability and Complexity in Model Ecosystems. Princeton: Princeton Univ. Press, 1973
[13] Thom, R.: Structural Stability and Morphogenesis. Reading, Mass.: W. A. Benjamin, 1975 · Zbl 0303.92002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.