×

zbMATH — the first resource for mathematics

A simple model for phase locking of biological oscillators. (English) Zbl 0397.92006

MSC:
92B05 General biology and biomathematics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnold, V. I.: Small denominators. 1. Mappings of the circumference onto itself. Trans. of The A.M.S. Series 2. 46, 213-284 (1965) · Zbl 0152.41905
[2] Arnold, V. I.: Ordinary Differential Equations. Cambridge, Mass.: MIT Press, 1973 · Zbl 0296.34001
[3] Cartwright, M. L., Littlewood, J. E.: On nonlinear differential equations of the second order. Ann. Math. 54, 1-37 (1951) · Zbl 0058.38604 · doi:10.2307/1969308
[4] Clark, F. J., von Euler, C.: On the regulation of depth and rate of breathing. J. Physiol. London 222, 267-295 (1972)
[5] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations, Chapter 17. New York: McGraw Hill, 1955 · Zbl 0064.33002
[6] Denjoy, A.: Sur les courbes definies par les equations differentielle a la surface du tore. J. Math. Pures et Appl. 11, 333-375 (1932) · Zbl 0006.30501
[7] Flaherty, J. E., Hoppensteadt, F. C.: Frequency entrainment of a forced van der Pol oscillator. Studies in Appl. Math. 58, 5-15 (1978) · Zbl 0384.34023
[8] Fohlmeister, J. F., Poppele, R. E., Purple, R. L.: Repetitive firing: dynamic behaviour of sensory neurons reconciled with a quantitative model. J. Neurophysiol. 37, 1213-1227 (1974)
[9] Grasman, J., Veling, E. J. M., Willems, G. M.: Relaxation oscillations governed by a van der Pol equation with periodic forcing term. SIAM J. Appl. Math. 31, 667-676 (1976) · Zbl 0355.34045 · doi:10.1137/0131059
[10] Guckenheimer, J., Oster, G., Ipaktchi, A.: The dynamics of density dependent population models. J. Math. Biol. 4, 101-147 (1977) · Zbl 0379.92016
[11] Hartline, D. K.: Simulation of phase-dependent pattern changes to perturbations of regular firing in crayfish stretch receptor. Brain Res. 110, 245-257 (1976) · doi:10.1016/0006-8993(76)90400-5
[12] Hayashi, C.: Nonlinear Oscillations in Physical Systems. New York: McGraw Hill, 1964 · Zbl 0192.50605
[13] Herman, M. R.: Mesure de Lebesque et nombre de rotation. In Lecture Notes Mathematics, #597, Geometry and Topology, pp. 271-293, Berlin: Springer-Verlag, 1977
[14] Kauffman, S.: Measuring a mitotic oscillator: the arc discontinuity. Bull. Math. Biol. 36, 171-182 (1974) · Zbl 0278.92002
[15] Keener, J. P.: Chaotic behavior in piecewise continuous difference equations. Trans. Am. Math. Soc. 1979 · Zbl 0458.58016
[16] Knight, B. W.: Dynamics of encoding in a population of neurons. J. Gen. Physiol. 59, 734-766 (1972a) · doi:10.1085/jgp.59.6.734
[17] Knight, B. W.: The relationship between the firing rate of a single neuron and the level of activity in a population of neurons. Experimental evidence for resonant enhancement in the population response. J. Gen. Physiol. 59, 767-778 (1972b) · doi:10.1085/jgp.59.6.767
[18] Li, T.-Y., Yorke, J. A.: Period three implies chaos. Am. Math. Monthly 82, 985-992 (1975) · Zbl 0351.92021 · doi:10.2307/2318254
[19] Peixoto, M. M.: Structural stability on two dimensional manifolds. Topology 1, 101-121 (1962) · Zbl 0107.07103 · doi:10.1016/0040-9383(65)90018-2
[20] Reid, J. V. O.: The cardiac pacemaker: effects of regularly spaced nervous input. Am. Heart J. 78, 58-64 (1969) · doi:10.1016/0002-8703(69)90259-2
[21] Rescigno, A., Stein, R. B., Purple, R. L., Poppele, R. E.: A neuronal model for the discharge patterns produced by cyclic inputs. Bull. Math. Biophys. 32, 337-353 (1970) · Zbl 0197.16604 · doi:10.1007/BF02476873
[22] Rosenberg, H.: Les diffeomorphismes du cercle. Seminaire Bourbaki, 28 e annee, 1975-76, pp. 81-98, Berlin: Springer-Verlag, 1977.
[23] Sachsenmaier, W., Remy, V., Plattner-Schobel, R.: Initiation of synchronous mitosis in Physarum polycephalum. Exp. Cell Res. 73, 41-48 (1972) · doi:10.1016/0014-4827(72)90099-7
[24] Stein, P. S. G.: Application of the mathematics of coupled oscillator systems to the analysis of the neural control of locomotion. Fed. Proc. 36, 2056-2059 (1977)
[25] Stein, R. B., French, A. S., Holden, A. V.: The frequency response, coherence, and information capacity of two neuronal models. Biophys. J. 12, 295-322 (1972) · doi:10.1016/S0006-3495(72)86087-9
[26] Tyson, J., Sachsenmaier, W.: Is nuclear division in Physarum controlled by a continuous limit cycle oscillator? J. Theor. Biol. 73 723-738 (1978) · doi:10.1016/0022-5193(78)90133-9
[27] Van der Tweel, L. H., Meijler, F. L., Van Capelle, F. J. L.: Synchronization of the heart. J. Appl. Physiol. 34, 283-287 (1973)
[28] Wendler, G.: The influence of propioceptive feedback on locust flight coordination. J. Comp. Physiol. 88, 173-200 (1974) · doi:10.1007/BF00695406
[29] Winfree, A. T.: Phase control of neural pacemakers. Science 197, 761-763 (1977) · doi:10.1126/science.887919
[30] Wyman, R. J.: Neural generation of the breathing rhythm. Ann. Rev. Physiol. 39, 417-448 (1977) · doi:10.1146/annurev.ph.39.030177.002221
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.