×

zbMATH — the first resource for mathematics

Interval estimation of a global optimum for large combinatorial problems. (English) Zbl 0397.90100

MSC:
90C99 Mathematical programming
68Q25 Analysis of algorithms and problem complexity
65K05 Numerical mathematical programming methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Beardwood, Proceedings of the Cambridge Philosophical Society 55 pp 299– (1959)
[2] Clough, Canadian Operational Research Society Journal 7 pp 102– (1969)
[3] Dannenbring, Management Science 23 pp 1273– (1977)
[4] Fisher, Proceedings of the Cambridge Philosophical Society 24 pp 180– (1928)
[5] and , ”Approximation Algorithms for Combinatorial Problems: An Annotated Bibliography,” in Algorithms and Complexity: New Directions and Recent Results, ed. (Academic Press, New York, 1976), pp. 41–52.
[6] Golden, Networks 7 pp 209– (1977)
[7] Golden, Communications in Statistics B7 pp 361– (1978) · Zbl 0398.62025 · doi:10.1080/03610917808812084
[8] Statistics of Extremes (Columbia University Press, New York, 1958). · Zbl 0086.34401
[9] Harter, Technometrics 7 pp 639– (1965)
[10] Held, Operations Research 18 pp 1138– (1970) · Zbl 0191.47903
[11] Held, Mathematical Programming 1 pp 6– (1971)
[12] Karp, Networks 5 pp 45– (1975)
[13] ”Monte Carlo Estimation in Complex Optimization Problems,” Doctoral Dissertation, The George Washington University, Washington, D.C. (1975).
[14] Krolak, Communications of the Association for Computing Machinery (ACM) 14 pp 327– (1971) · Zbl 0217.27302 · doi:10.1145/362588.362593
[15] Lin, Bell System Technical Journal 44 pp 2245– (1965) · Zbl 0136.14705 · doi:10.1002/j.1538-7305.1965.tb04146.x
[16] Lin, Operations Research 21 pp 498– (1973)
[17] , and , Methods for Statistical Analysis of Reliability and Life Data (John Wiley and Sons, New York, 1974).
[18] McRoberts, Operations Research 19 pp 1331– (1971)
[19] Mosteller, Annals of Mathematical Statistics 12 pp 228– (1941)
[20] and , Combinatorial Algorithms (Academic Press, New York, 1975).
[21] and , ”On the Symmetric Traveling Salesman Problem: A Computational Study,” Working Paper No. 77-89, Graduate School of Business Administration, New York University, New York, N. Y. (1977).
[22] Robson, Biometrika 51 pp 33– (1964) · Zbl 0163.40503 · doi:10.1093/biomet/51.1-2.33
[23] Sahni, Operations Research 25 pp 920– (1977)
[24] ”Scheduling Dial-A-Ride Transportation Systems: An Asymptotic Approach,” Doctoral Dissertation, Harvard University, Cambridge, Mass. (1977).
[25] Swed, Annals of Mathematical Statistics 14 pp 66– (1943)
[26] Zanakis, TIMS Studies in the Management Sciences 7 pp 63– (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.