zbMATH — the first resource for mathematics

The noncommutative Markovian property. (English. Russian original) Zbl 0395.60076
Funct. Anal. Appl. 9, 1-7 (1975); translation from Funkts. Anal. Prilozh. 9, No. 1, 1-8 (1975).

60J99 Markov processes
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI
[1] R. L. Dobrushin, ”Description of random fields by means of conditional probabilities and their regularity conditions,” Teoriya Veroyat. i Prim.,13, No. 2, 201-229 (1968). · Zbl 0184.40403
[2] E. Nelson, ”Quantum fields and Markov fields,” Proc. Amer. Math. Soc. Summer Conference (1971). · Zbl 0236.73070
[3] H. Araki, ”One-dimensional quantum lattice systems,” Matematika,15, No. 1, 101-113 (1971). · Zbl 0239.46068
[4] D. Ruelle, Statistical Mechanics: Rigorous Results, W. A. Benjamin (1969).
[5] S. Sakai, C*-Algebras and W*-Algebras, Springer-Verlag, Berlin (1971).
[6] R. L. Dobrushin and R. A. Minlos, ”Construction of a one-dimensional quantum field by means of a continuous Markov field,” Funktsional. Analiz i Ego Prilozhen.,7, No. 4, 81-82 (1973). · Zbl 0294.60081
[7] C. Lance, ”Tensor products of C*-algebras,” Proc. Varenna Summer School on C*-Algebras and Applications (1973). · Zbl 0252.46065
[8] S. Kakutani and K. Yoshida, ”Operator theoretical treatment of Markov processes,” Ann. Math.,2, No. 42, 188-228 (1941). · Zbl 0024.32402
[9] R. T. Powers, ”Representation of uniformly hyperfinite algebras and their connection with Neumann rings,” Matematika,13, No. 4, 94-124 (1969).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.