×

zbMATH — the first resource for mathematics

Scattering theory for systems with different spatial asymptotics on the left and right. (English) Zbl 0393.34015

MSC:
34L99 Ordinary differential operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, S.: Lectures on elliptic boundary value problems. Princeton, London, Toronto: Van Nostrand 1965 · Zbl 0142.37401
[2] Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Sci. II2, 151-218 (1975) · Zbl 0315.47007
[3] Alsholm, P. K., Kato, T.: Scattering with long range potentials. Proc. Symp. Pure Math.23, 393-399 (1973) · Zbl 0263.47008
[4] Amrein, W., Georgescu, V.: On the characterization of bound states and scattering states in quantum mechanics. Helv. Phys. Acta46, 635-658 (1973)
[5] Amrein, W., Martin, P., Misra, B.: On the asymptotic condition in scattering theory. Helv. Phys. Acta43, 313-344 (1970) · Zbl 0195.56101
[6] Avron, J., Herbst, I.: Spectral and scattering theory of Schrödinger operators related to the Stark effect. Commun. math. Phys.52, 239-254 (1977) · Zbl 0351.47007 · doi:10.1007/BF01609485
[7] Birman, M. S., Solomjak, M. Z.: On estimates of singular numbers of integral operators III. Vestn. Leningr. Univ.24, 35-48 (1969) · Zbl 0181.13601
[8] Coddington, E., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955 · Zbl 0064.33002
[9] Combes, J. M., : An algebraic approach to scattering theory. (unpublished) (1970)
[10] Combescure, M., Ginibre, J.: Scattering and local absorption for the Schrödinger operator. J. Funct. Anal. (to appear) · Zbl 0382.47004
[11] Davies, E. B.: Scattering from infinite sheets. Math. Proc. Camb. Phil. Soc.82, 327-334 (1977) · Zbl 0362.47003 · doi:10.1017/S0305004100053962
[12] Deift, P.: Classical scattering theory with a trace condition. Princeton: Princeton University Press 1978 · Zbl 0392.47013
[13] Deift, P.: Application of a commutator formula. Duke Math. J. (to appear) · Zbl 0392.47013
[14] Deift, P., Simon, B.: On the decoupling of finite singularities from the question of asymptotic completeness. J. Funct. Anal.23, 218-238 (1976) · Zbl 0344.47007 · doi:10.1016/0022-1236(76)90049-5
[15] Deift, P., Simon, B.: A time dependent approach to the completeness of multiparticle quantum systems. Comm. Pure Appl. Math.30, 573-583 (1977) · Zbl 0354.47004 · doi:10.1002/cpa.3160300504
[16] Deift, P., Trubowitz, E.: Inverse scattering on the line. Comm. Pure Appl. Math. (to appear) · Zbl 0388.34005
[17] Dinaburg, E., Sinai, Ya.: The one dimensional Schrödinger equation with a quasiperiodic potential. Funct. Anal. Appl.9, 8-21 (1975) · Zbl 0357.58011 · doi:10.1007/BF01078168
[18] Dollard, J.: On the definition of scattering subspaces in non-relativistic quantum mechanics. J. Math. Phys.18, 229-232 (1977) · doi:10.1063/1.523260
[19] Eastham, M. S. P.: The spectral theory of periodic differential equations. Scottish Academic Press 1973 · Zbl 0287.34016
[20] Enss V.: A note on Hunziker’s theorem. Commun. math. Phys.52, 233-238 (1977) · doi:10.1007/BF01609484
[21] Enss, V.: Asymptotic completeness for quantum mechanical potential scattering. Commun. math. Phys.61, 258-291 (1978) · Zbl 0389.47005 · doi:10.1007/BF01940771
[22] Gross, H., Grümm, H. R., Narnhofer, H., Thirring, W.: Algebraic theory of Coulomb scattering. Acta Phys. Austr.40, 97-103 (1974)
[23] Hepp, K.: Scattering theory in the Heisenberg ferromagnet. Phys. Rev.135, 95-97 (1972)
[24] Hörmander, L.: The existence of wave operators in scattering theory. Math. Z.146, 69-91 (1976) · Zbl 0319.35059 · doi:10.1007/BF01213717
[25] Jost, R.: The general theory of quantized fields. Providence, RI: American Mathematical Society 1965 · Zbl 0127.19105
[26] Klein, O.: Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Z. Physik53, 157-165 (1929) · JFM 55.0527.04 · doi:10.1007/BF01339716
[27] Kuroda, S.: Scattering theory for differential operators I. J. Math. Soc. Japan25, 75-104 (1973) · Zbl 0245.47006 · doi:10.2969/jmsj/02510075
[28] Lavine, R. B.: Scattering theory for long range potentials. J. Funct. Anal.5, 368-382 (1970) · Zbl 0192.61201 · doi:10.1016/0022-1236(70)90015-7
[29] Lax, P., Phillips, R. S.: Scattering theory. New York, London: Academic Press 1967 · Zbl 0214.12002
[30] Levitan, B., Sargstan, I.: Introduction to spectral theory. Am. Math. Soc. Monograph. Transl.39, 1975
[31] Magnus, W., Winkler, S.: Hill’s equation. New York: Wiley 1966 · Zbl 0158.09604
[32] Pearson, D.: General theory of potential scattering with absorption at local singularities. Helv. Phys. Acta47, 249-264 (1974)
[33] Pearson, D.: A generalization of the Birman trace theorem. J. Funct. Anal.28, 182-186 (1978) · Zbl 0382.47006 · doi:10.1016/0022-1236(78)90084-8
[34] Reed, M., Simon, B.: Methods of modern mathematical physics. I. Functional analysis. New York, London: Academic Press 1972 · Zbl 0242.46001
[35] Reed M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis. New York, London: Academic Press 1975 · Zbl 0308.47002
[36] Reed, M., Simon, B.: Methods of modern mathematical physics. III. Scattering theory. New York, London: Academic Press 1979 · Zbl 0405.47007
[37] Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York, London: Academic Press 1978 · Zbl 0401.47001
[38] Ruelle, D.: A remark on bound states in potential scattering theory. Nuovo Cimento61A, 655-662 (1969)
[39] Ruelle, D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta35, 147-163 (1962) · Zbl 0158.45702
[40] Ruijenaars, S., Bongaarts, P.: Scattering theory for one-dimensional step potentials. Ann. Inst. Henri Poincaré26A, 1-17 (1977)
[41] Semenov, Yu.: Wave operators for the Schrödinger equation with strongly singular short range potentials. Lett. Math. Phys.1, 457-462 (1977) · Zbl 0383.47008 · doi:10.1007/BF00399736
[42] Simon, B.: Lectures on trace ideal methods. In: London Mathematical Society Lecture Notes. Cambridge: Cambridge University Press 1979
[43] Simon, B.: Geometric methods in multiparticle quantum systems. Commun. math. Phys.55, 259-274 (1977) · Zbl 0413.47008 · doi:10.1007/BF01614550
[44] Simon, B.: N-body scattering in the two cluster region. Commun. math. Phys.58, 205-210 (1978) · doi:10.1007/BF01609420
[45] Sinha, K.: On the absolutely and singularly continuous subspace in scattering theory. Ann. Inst. Henri Poincaré26A, 263-277 (1977)
[46] Streater, R. F.: Spin wave scattering. In: Scattering theory in mathematical physics, 273-298. Dordrecht, Stuttgart: Reidel 1974
[47] Wilcox, C.: Scattering states and wave operators in the abstract theory of scattering. J. Funct. Anal.12, 257-274 (1973) · Zbl 0248.47006 · doi:10.1016/0022-1236(73)90079-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.