×

zbMATH — the first resource for mathematics

An immunization model for a heterogeneous population. (English) Zbl 0392.92009

MSC:
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bailey, N.T.J., The mathematical theory of infectious diseases, (1975), Griffin London · Zbl 0115.37202
[2] Dietz, K., Transmission and control of arbovirus diseases, (), 104-121 · Zbl 0322.92023
[3] Gupta, N.K.; Rink, R.E., Optimal control of epidemics, Math. biosci, 18, 383-396, (1973) · Zbl 0267.92006
[4] Hale, J.K., Ordinary differential equations, (1969), Wiley-Interscience New York · Zbl 0186.40901
[5] Hethcote, H.W., Mathematical models for the spread of infectious diseases, (), 122-131
[6] Hethcote, H.W., Qualitative analyses of communicable disease models, Math. biosci, 28, 335-356, (1976) · Zbl 0326.92017
[7] Hethcote, H.W.; Waltman, P., Optimal vaccination schedules in a deterministic epidemic model, Math. biosci, 18, 365-381, (1973) · Zbl 0266.92011
[8] Lajmanovich, A.; Yorke, J.A., A deterministic model for gonorrhea in a nonhomogeneous population, Math. biosci, 28, 221-236, (1976) · Zbl 0344.92016
[9] London, W.P.; Yorke, J.A., Recurrent outbreaks of measles, chickenpox and mumps, I: seasonal variation in contact rates, Amer. J. epid, 98, 453-468, (1973)
[10] Longini, I.M.; Ackerman, E.; Elveback, L.R., An optimization model for influenza A epidemics, Math. biosci, 38, 141-157, (1978)
[11] (), No. 53
[12] Morton, R.; Wickwire, K.H., On the optimal control of a deterministic epidemic, Adv. appl. probability, 6, 622-635, (1974) · Zbl 0324.92029
[13] Nold, A., The infectee number at equilibrium for a communicable disease, Math. biosci, (1978), to appear
[14] Prather, E.C., Assessment of immunization levels, (), 6-9
[15] Varga, R.W., Matrix iterative analysis, (1962), Prentice-Hall Englewood Cliffs, N.J
[16] Watson, R.K., On an epidemic in a stratified population, J. appl. probability, 9, 659-666, (1972) · Zbl 0245.92019
[17] Wickwire, K.H., Mathematical models for the control of pests and infectious diseases: a survey, Theor. pop. biol, 11, 182-238, (1977) · Zbl 0356.92001
[18] Woods, T.J., Aspects of the birth-death model of an epidemic, ()
[19] Yorke, J.A., Invariance for ordinary differential equations, Math. systems theory, 1, 353-372, (1967) · Zbl 0155.14201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.