×

zbMATH — the first resource for mathematics

Infinite-dimensional algebras, Dedekind’s \(\eta\)-function, classical Möbius function and the very strange formula. (English) Zbl 0391.17010

MSC:
17B65 Infinite-dimensional Lie (super)algebras
11P81 Elementary theory of partitions
11F11 Holomorphic modular forms of integral weight
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] MacDonald, I.G, Affine root systems and Dedekind’s η-function, Invent. math., 15, 91-143, (1972) · Zbl 0244.17005
[2] Kac, V.G, Infinite-dimensional Lie algebras and Dedekind’s η-function, J. functional anal. appl., 8, 68-70, (1974) · Zbl 0299.17005
[3] Kostant, B, On Macdonald’s η-function formula, the Laplacian and generalized exponents, Advances in math., 20, 179-212, (1976) · Zbl 0339.10019
[4] Lepowsky, J, Macdonald-type identities, Advances in math., 27, 230-234, (1978) · Zbl 0388.17003
[5] Kac, V.G, Lie superalgebras, Advances in math., 26, 8-96, (1977) · Zbl 0366.17012
[6] Kac, V.G, Simple irreducible graded Lie algebras of finite growth, Math. USSR-izv., 2, 1271-1311, (1968) · Zbl 0222.17007
[7] Kac, V.G, Some properties of contragredient Lie algebras, Trudy MIEM, 5, 48-60, (1969), (in Russian)
[8] Kac, V.G, Characters of typical representations of classical Lie superalgebras, Comm. in algebra, 5, 889-897, (1977) · Zbl 0359.17010
[9] Kac, V.G, Automorphisms of finite order of semi-simple Lie algebras, J. functional anal. appl., 3, 252-254, (1969), (For a detail exposition see the Helgason’s book Differential geometry, Lie groups and symmetric spaces, Academic Press, 1978) · Zbl 0274.17002
[10] \scV. G. Kac, Automorphisms of finite order of simple Lie superalgebras, to appear. · Zbl 0331.17001
[11] Carlitz, L; Subbarao, M.V, A simple proof of the quaintuple product identity, (), 42-44 · Zbl 0234.05005
[12] Vinberg, E.B, Discrete linear groups generated by reflections, Math. USSR-izv., 5, 1083-1119, (1971) · Zbl 0256.20067
[13] Z̆elobenko, D.P, Compact Lie groups and their representations, (1970), Moscow · Zbl 0272.22006
[14] Kac, V.G, An algebraic definition of the compact Lie groups, Trudy MIEM, 5, 36-47, (1969)
[15] Kostant, B, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. math., 81, 973-1032, (1959) · Zbl 0099.25603
[16] Garland, H; Lepowsky, J, Lie algebra homology and the Macdonald-Kac formulas, Invent. math., 34, 37-76, (1976) · Zbl 0358.17015
[17] Shimura, G, Introduction to the arithmetic theory of automorphic functions, () · Zbl 0872.11023
[18] Bernstein, I.N; Gelfand, I.M; Gelfand, S.I, Structure of representations generated by highest weight vectors, J. functional anal. appl., 5, 1-8, (1971) · Zbl 0246.17008
[19] Van Asch, A.G, Modular forms and root systems, (1975), preprint · Zbl 0329.10017
[20] Looijenda, E, Root systems and elliptic curves, Invent. math., 38, 17-32, (1976)
[21] Moody, R.V, A new class of Lie algebras, J. algebra, 10, 211-230, (1968) · Zbl 0191.03005
[22] Jacobson, N, Lie algebras, (1962), Interscience New York · JFM 61.1044.02
[23] \scH. Garland, The arithmetic theory of loop algebras, preprint. · Zbl 0424.17009
[24] \scV. G. Kac, D. A. Kazhdan, J. Lepowsky, and R. L. Wilson, Realization of basic representations of Euclidian Lie algebras, to appear. · Zbl 0476.17003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.