×

zbMATH — the first resource for mathematics

A 2nd order numerical method for laminar flow at moderate to high Reynolds numbers: Entrance flow in a duct. (English) Zbl 0387.76028

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
65N06 Finite difference methods for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barrett, Q. J. M. A. M. XXVII pp 57– (1974) · Zbl 0285.65053 · doi:10.1093/qjmam/27.1.57
[2] Greenspan, J. Eng. Math. 3 pp 21– (1969)
[3] et al, Heat and Mass Transfer in Recirculating Flows, Academic Press, London, 1969.
[4] and , Finite Difference Methods for Partial Differential Equations, Wiley, New York, 1960.
[5] de G. Allen, Q. J. M. A. M. VIII pp 129– (1955) · Zbl 0064.19802 · doi:10.1093/qjmam/8.2.129
[6] Dennis, Q. J. M. A. M. 13 pp 487– (1960) · Zbl 0098.09304 · doi:10.1093/qjmam/13.4.487
[7] Spalding, Int. J. num. Meth. Engng 4 pp 551– (1972)
[8] Runchal, Int. J. num. Meth Engng 4 pp 541– (1972)
[9] Raithby, Computers and Fluids 2 pp 191– (1974)
[10] 3rd Int. Conf. Num. Meth. Fluid Mech., Springer-Verlag (1972).
[11] Roscoe, J. I. M. A. 16 pp 291– (1975)
[12] Blackburn, Int. J. num. Meth Engng 10 pp 718– (1976)
[13] Roscoe, Int. J. num. Meth. Engng 10 pp 1299– (1976)
[14] , and , ’An upwind finite element scheme for two dimensional convective transport equation’, Int. J. num. Meth. Engng, 131-143 (1977). · Zbl 0353.65065
[15] Christie, Int. J. num. Meth. Engng 10 pp 1389– (1976)
[16] Dorr, Math. Comp. 25 pp 271– (1971)
[17] Chen, Trans ASME 95 pp 153– (19743)
[18] Wang, A. I. C. E. J. 10 pp 323– (1964) · doi:10.1002/aic.690100310
[19] Boundary Layer Theory, McGraw-Hill, New York, 1960.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.