zbMATH — the first resource for mathematics

Finding all efficient extreme points for multiple objective linear programs. (English) Zbl 0385.90105

90C31 Sensitivity, stability, parametric optimization
90C05 Linear programming
05C30 Enumeration in graph theory
Full Text: DOI
[1] S.M. Belenson and K.C. Kapur, ”An algorithm for solving multicriterion linear problems with examples”,Operational Research Quarterly 24 (1973) 65–77. · Zbl 0261.90035 · doi:10.1057/jors.1973.9
[2] R. Benayoun, J. de Montgolfier, J. Tergeny and O. Larichev, ”Linear programming with multiple objective functions: step method (STEM)”,Mathematical Programming 1 (1971) 366–375. · Zbl 0242.90026 · doi:10.1007/BF01584098
[3] A. Charnes and W. Cooper,Management models and industrial applications of linear programming (Wiley, New York, 1961). · Zbl 0107.37004
[4] J.L. Cochrane and M. Zeleny, eds.,Multiple criteria decision making (University of South Carolina Press, 1973).
[5] J.G. Ecker and I.A. Kouada, ”Finding efficient points for linear multiple objective programs”,Mathematical Programming 8 (1975) 375–377. · Zbl 0385.90105 · doi:10.1007/BF01580453
[6] J.G. Ecker, Nancy S. Hegner and I.A. Kouada, ”Generating all maximal efficient faces for multiple objective linear programs”, to appear. · Zbl 0393.90087
[7] J.P. Evans and R.E. Steuer, ”A revised simplex method for linear multiple objective programs”,Mathematical Programming 5 (1973) 54–72. · Zbl 0281.90045 · doi:10.1007/BF01580111
[8] T. Gal, ”A method for determining the set of all efficient solutions to a linear vector maximum problem”, Rept. 75/13, Institut für Wirtschaftswissenschaften, Aachen, Germany (1975).
[9] A.M. Geoffrion, J.S. Dyer and A. Feinberg, ”An interactive approach for multicriterion optimization with an application to the operation of an academic department”,Management Science 19 (1972) 357–368. · Zbl 0247.90069 · doi:10.1287/mnsc.19.4.357
[10] T.C. Koopmans, ed.,Activity analysis of production and allocation (Wiley, New York, 1951). · Zbl 0045.09503
[11] I.A. Kouada, ”Linear vector maximization”, Dissertation, Rensselaer Polytechnic Institute Troy, New York (1975). · Zbl 0857.90113
[12] J. Philip, ”Algorithms for the vector maximization problem”,Mathematical Programming 2 (1972) 207–278. · Zbl 0288.90052 · doi:10.1007/BF01584543
[13] B. Roy, ”Problems and methods with multiple objective functions”,Mathematical Programming 1 (1971) 239–266. · Zbl 0254.90061 · doi:10.1007/BF01584088
[14] S. Zionts and J. Wallenius, ”An interactive programming method for solving the multiple criteria problem”,Management Science 22 (1976) 652–663. · Zbl 0318.90053 · doi:10.1287/mnsc.22.6.652
[15] P.L. Yu and M. Zeleny, ”The set of all nondominated solutions in linear cases and a multicriteria simplex method”,Journal of Mathematical Analysis and Application 49 (1975) 430–468. · Zbl 0313.65047 · doi:10.1016/0022-247X(75)90189-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.