×

zbMATH — the first resource for mathematics

Frequency entrainment of a forced van der Pol oscillator. (English) Zbl 0384.34023

MSC:
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
Software:
GEAR
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Krylov, Ann. of Math. Ser. (1947)
[2] Stoker, Interscience (1950)
[3] Littlewood, On nonlinear differential equations of the second order III, Acta Math. 97 pp 267– (1957) · Zbl 0081.08401 · doi:10.1007/BF02392400
[4] Wasow, Interscience (1965)
[5] Perturbation Methods in Applied Mathematics · Zbl 0456.34001
[6] Cartwright, Ann. Math. 54 pp 1– (1951) · doi:10.2307/1969308
[7] Cartwright, Camb. Phil. Soc. Proc. 45 pp 495– (1949) · doi:10.1017/S0305004100025196
[8] Cartwright, Ann. Math. 48 pp 472– (1947) · Zbl 0029.12602 · doi:10.2307/1969181
[9] Cartwright, J. Lond. Math. Soc. 20 pp 180– (1945) · Zbl 0061.18903 · doi:10.1112/jlms/s1-20.3.180
[10] Cartwright, Contributions to the Theory of Nonlinear Oscillations I (1950)
[11] Levinson, A second order differential equation with singular solutions, Ann. Math. 50 pp 127– (1949) · Zbl 0041.42311 · doi:10.2307/1969357
[12] Hayashi, Nonlinear Oscillations in Physical Systems (1964) · Zbl 0192.50605
[13] Grasman, Relaxation oscillations governed by a van der Pol equation, SIAM J. Appl. Math. 31 pp 667– (1976) · Zbl 0355.34045 · doi:10.1137/0131059
[14] Henon, A. Two Dimensional Mapping with a Strange Attractor, Commun. Math. Phys. 50 pp 69– (1976) · Zbl 0576.58018 · doi:10.1007/BF01608556
[16] Moser, Ann. Math. Stud. (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.