×

zbMATH — the first resource for mathematics

On global stability of a predator-prey system. (English) Zbl 0383.92014

MSC:
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andronov, A.A.; Leontovich, E.A.; Gordon, I.I.; Maier, A.G., Qualitative theory of second order dynamical systems, (1973), Wiley New York · Zbl 0282.34022
[2] Freedman, H.I., Graphical stability, enrichment, and pest control by a natural enemy, Math. biosci., 31, 207-225, (1976) · Zbl 0373.92023
[3] Gause, G.F.; Smaragdova, N.P.; Witt, A.A., Further studies of interaction between predators and prey, J. anim. ecol., 5, 1-18, (1936)
[4] Goh, B.S., Global stability in many species systems, Amer. natur., III, 977, 135-143, (1977)
[5] Hsu, S.B., A mathematical analysis of competition for a single resource ph.D. thesis, (1976), University of Iowa
[6] Kolmogorov, A., Sulla teoria di Volterra Della lotta per l’esistenze, Giorn. ist. ital. attuari, 7, 74-80, (1936) · JFM 62.1263.01
[7] Labine, P.A.; Wilson, D.H., A teaching model of population interactions: an algae-daphnia-predator system, Bioscience, 23, 3, 162-167, (1973)
[8] LaSalle, J., Some extension of Lyapunov’s second method, IRE trans. circuit theory, CT-7, 520-527, (1960)
[9] May, R.M., Stability and complexity in model ecosystems, (1974), Princeton U.P Princeton, N.J
[10] May, R.M., Theoretical ecosystems, (1976), Saunders
[11] Maynard Smith, J., Models in ecology, (1974), Cambridge · Zbl 0312.92001
[12] Oaten, A.; Murdoch, W.W., Functional response and stability in predator-prey systems, Amer. natur., 109, 289-298, (1975)
[13] Rosenzweig, M.L., Why the prey curve has a hump, Amer. natur., 103, 81-87, (1969)
[14] Rosenzweig, M.L.; MacArthur, R.H., Graphical representation and stability conditions of predator-prey interaction, Amer. natur., 47, 209-223, (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.