×

zbMATH — the first resource for mathematics

Variational inequalities and free boundary problems. (English) Zbl 0382.35004

MSC:
35A15 Variational methods applied to PDEs
35B45 A priori estimates in context of PDEs
35J15 Second-order elliptic equations
35B65 Smoothness and regularity of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623 – 727. · Zbl 0093.10401 · doi:10.1002/cpa.3160120405 · doi.org
[2] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35 – 92. · Zbl 0123.28706 · doi:10.1002/cpa.3160170104 · doi.org
[3] Hans Wilhelm Alt, A free boundary problem associated with the flow of ground water, Arch. Rational Mech. Anal. 64 (1977), no. 2, 111 – 126. · Zbl 0371.76079 · doi:10.1007/BF00280093 · doi.org
[4] Robert F. Anderson and Avner Friedman, A quality control problem and quasi-variational inequalities, Arch. Rational Mech. Anal. 63 (1976/77), no. 3, 205 – 252. · Zbl 0364.49005 · doi:10.1007/BF00251581 · doi.org
[5] Claudio Baiocchi, Su un problema di frontiera libera connesso a questioni di idraulica, Ann. Mat. Pura Appl. (4) 92 (1972), 107 – 127. · Zbl 0258.76069 · doi:10.1007/BF02417940 · doi.org
[6] Claudio Baiocchi, Free boundary problems in the theory of fluid flow through porous media, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 237 – 243. · Zbl 0347.76067
[7] Claudio Baiocchi, Problèmes à frontière libre et inéquations variationnelles, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 2, Ai, A29 – A32. · Zbl 0342.35055
[8] Alain Bensoussan and Avner Friedman, Nonzero-sum stochastic differential games with stopping times and free boundary problems, Trans. Amer. Math. Soc. 231 (1977), no. 2, 275 – 327. · Zbl 0368.93029
[9] A. Bensoussan and J.-L. Lions, Problèmes de temps d’arrêt optimal et inéquations variationnelles paraboliques, Applicable Anal. 3 (1973), 267 – 294 (French). Collection of articles dedicated to Alexander Weinstein on the occasion of his 75th birthday. · Zbl 0341.60032 · doi:10.1080/00036817308839070 · doi.org
[10] A. Bensoussan and J. L. Lions, Temps d’arrêt optimal et contrôle impulsionnel. Vol. I. (to appear). · Zbl 0491.93002
[11] Henri Berestycki, Sur certains problèmes de valeurs propres non linéaires, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 4, Aii, A171 – A173 (French, with English summary). · Zbl 0335.35047
[12] Haïm Brézis, Problèmes unilatéraux, J. Math. Pures Appl. (9) 51 (1972), 1 – 168. · Zbl 0221.35028
[13] H. Brézis and M. Sibony, Équivalence de deux inéquations variationnelles et applications, Arch. Rational Mech. Anal. 41 (1971), 254 – 265 (French). · Zbl 0214.11104 · doi:10.1007/BF00250529 · doi.org
[14] H. Brezis and G. Duvaut, Ecoulment avec sillage autour d’un profile symétrique sans incidence, C. R. Acad. Sci. Paris 276 (1973), 875-878.
[15] Haïm Brézis and David Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J. 23 (1973/74), 831 – 844. · Zbl 0278.49011 · doi:10.1512/iumj.1974.23.23069 · doi.org
[16] Haïm R. Brezis and Guido Stampacchia, Sur la régularité de la solution d’inéquations elliptiques, Bull. Soc. Math. France 96 (1968), 153 – 180 (French). · Zbl 0165.45601
[17] Haïm Brézis and Guido Stampacchia, The hodograph method in fluid-dynamics in the light of variational inequalities, Arch. Rational Mech. Anal. 61 (1976), no. 1, 1 – 18. · Zbl 0334.76004 · doi:10.1007/BF00251859 · doi.org
[18] Luis A. Caffarelli, The smoothness of the free surface in a filtration problem, Arch. Rational Mech. Anal. 63 (1976), no. 1, 77 – 86. · Zbl 0388.35010 · doi:10.1007/BF00280143 · doi.org
[19] L. A. Caffarelli, The regularity of elliptic and parabolic free boundaries, Acta Math. · Zbl 0357.35011
[20] L. A. Caffarelli, The local regularity of a phreatic surface, Arch. Rational Mech. Anal. (to appear).
[21] L. A. Caffarelli and N. M. Rivière, Smoothness and analyticity of free boundaries in variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 2, 289 – 310. · Zbl 0363.35009
[22] L. A. Caffarelli and N. M. Rivière, Asymptotic behaviour of free boundaries at their singular points, Ann. of Math. (2) 106 (1977), no. 2, 309 – 317. · Zbl 0364.35041 · doi:10.2307/1971098 · doi.org
[23] L. A. Caffarelli and N. M. Rivière, The Lipschitz character of the stress tensor, when twisting an elastic plastic bar, Arch. Rational Mech. Anal. 69 (1979), no. 1, 31 – 36. · Zbl 0399.73044 · doi:10.1007/BF00248408 · doi.org
[24] Georges Duvaut, Résolution d’un problème de Stefan (fusion d’un bloc de glace à zéro degré), C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1461 – A1463 (French). · Zbl 0258.35037
[25] L. E. Fraenkel and M. S. Berger, A global theory of steady vortex rings in an ideal fluid, Acta Math. 132 (1974), 13 – 51. · Zbl 0282.76014 · doi:10.1007/BF02392107 · doi.org
[26] Jens Frehse, On the regularity of the solution of a second order variational inequality, Boll. Un. Mat. Ital. (4) 6 (1972), 312 – 315 (English, with Italian summary). · Zbl 0261.49021
[27] Jens Frehse, Two dimensional variational problems with thin obstacles, Math. Z. 143 (1975), no. 3, 279 – 288. · Zbl 0295.49003 · doi:10.1007/BF01214380 · doi.org
[28] Jens Frehse, On Signorini’s problem and variational problems with thin obstacles, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 2, 343 – 362. · Zbl 0353.49020
[29] Avner Friedman, On the regularity of the solutions of nonlinear elliptic and parabolic systems of partial differential equations, J. Math. Mech. 7 (1958), 43 – 59. · Zbl 0078.27702
[30] Avner Friedman, The Stefan problem in several space variables, Trans. Amer. Math. Soc. 133 (1968), 51 – 87. · Zbl 0162.41903
[31] Avner Friedman, Analyticity of the free boundary for the Stefan problem, Arch. Rational Mech. Anal. 61 (1976), no. 2, 97 – 125. · Zbl 0329.35034 · doi:10.1007/BF00249700 · doi.org
[32] A. Friedman, On the free boundary of a quasi variational inequality arising in a problem of quality control, Trans. Amer. Math. Soc. (to appear). · Zbl 0404.62073
[33] Avner Friedman and Robert Jensen, A parabolic quasi-variational inequality arising in hydraulics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 3, 421 – 468. · Zbl 0316.49034
[34] Avner Friedman and Robert Jensen, Elliptic quasi-variational inequalities and application to a non-stationary problem in hydraulics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 1, 47 – 88. · Zbl 0322.35025
[35] Avner Friedman and David Kinderlehrer, A one phase Stefan problem, Indiana Univ. Math. J. 24 (1974/75), no. 11, 1005 – 1035. · Zbl 0334.49002 · doi:10.1512/iumj.1975.24.24086 · doi.org
[36] P. R. Garabedian, Partial differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. · Zbl 0124.30501
[37] Claus Gerhardt, Regularity of solutions of nonlinear variational inequalities, Arch. Rational Mech. Anal. 52 (1973), 389 – 393. · Zbl 0277.49003 · doi:10.1007/BF00247471 · doi.org
[38] M. Giaquinta and L. Pepe, Esistenza e regolarità per il problema dell’ area minima con ostacoli in n variabili, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 25 (1971), 481-507. MR 46 #4335. · Zbl 0283.49032
[39] E. Giusti, Minimal surfaces with obstacles, Geometric measure theory and minimal surfaces (Centro Internaz. Mat. Estivo (C.I.M.E.), III Ciclo, Varenna, 1972) Edizioni Cremonese, Rome, 1973, pp. 119 – 153. · Zbl 0268.49048
[40] Howard Jenkins and James Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions, J. Reine Angew. Math. 229 (1968), 170 – 187. · Zbl 0159.40204 · doi:10.1515/crll.1968.229.170 · doi.org
[41] Charles Kahane, Analyticity of solutions of mildly singular integral equations, Comm. Pure Appl. Math. 18 (1965), 593 – 626. · Zbl 0142.39102 · doi:10.1002/cpa.3160180404 · doi.org
[42] David Kinderlehrer, Variational inequalities with lower dimensional obstacles, Israel J. Math. 10 (1971), 339 – 348. · Zbl 0263.49008 · doi:10.1007/BF02771651 · doi.org
[43] David Kinderlehrer, The coincidence set of solutions of certain variational inequalities., Arch. Rational Mech. Anal. 40 (1970/1971), 231 – 250. · Zbl 0219.49014 · doi:10.1007/BF00281484 · doi.org
[44] David Kinderlehrer, How a minimal surface leaves an obstacle, Acta Math. 130 (1973), 221 – 242. · Zbl 0268.49050 · doi:10.1007/BF02392266 · doi.org
[45] David Kinderlehrer, The free boundary determined by the solution to a differential equation, Indiana Univ. Math. J. 25 (1976), no. 2, 195 – 208. · Zbl 0336.35031 · doi:10.1512/iumj.1976.25.25016 · doi.org
[46] D. Kinderlehrer and L. Nirenberg, Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 2, 373 – 391. · Zbl 0352.35023
[47] David Kinderlehrer and Louis Nirenberg, The smoothness of the free boundary in the one phase Stefan problem, Comm. Pure Appl. Math. 31 (1978), no. 3, 257 – 282. · Zbl 0391.35060 · doi:10.1002/cpa.3160310302 · doi.org
[48] David Kinderlehrer and Louis Nirenberg, Analyticity at the boundary of solutions of nonlinear second-order parabolic equations, Comm. Pure Appl. Math. 31 (1978), no. 3, 283 – 338. · Zbl 0391.35045 · doi:10.1002/cpa.3160310303 · doi.org
[49] D. Kinderlehrer, L. Nirenberg and J. Spruck, (to appear).
[50] David Kinderlehrer and Joel Spruck, The shape and smoothness of stable plasma configurations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 1, 131 – 148. · Zbl 0409.76095
[51] David Kinderlehrer and Guido Stampacchia, A free boundary value problem in potential theory, Ann. Inst. Fourier (Grenoble) 25 (1975), no. 3-4, xvii, 323 – 344 (English, with French summary). Collection of articles dedicated to Marcel Brelot on the occasion of his 70th birthday. · Zbl 0303.31003
[52] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications · Zbl 0457.35001
[53] Hans Lewy, A note on harmonic functions and a hydrodynamical application, Proc. Amer. Math. Soc. 3 (1952), 111 – 113. · Zbl 0046.41706
[54] Hans Lewy, On the boundary behavior of minimal surfaces, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 103 – 110. · Zbl 0042.15702
[55] Hans Lewy, On mimimal surfaces with partially free boundary, Comm. Pure Appl. Math. 4 (1951), 1 – 13. · doi:10.1002/cpa.3160040102 · doi.org
[56] Hans Lewy, On the reflection laws of second order differential equations in two independent variables, Bull. Amer. Math. Soc. 65 (1959), 37 – 58. · Zbl 0089.08001
[57] H. Lewy, On a minimum problem for superharmonic functions, Proc. Internat. Conf. on Functional Analysis, Tokyo, 1969. · Zbl 0193.39401
[58] H. Lewy, On the nature of the boundary separating two domains with different regimes, Accad. Naz. Lincei, 1975.
[59] Hans Lewy and Guido Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math. 22 (1969), 153 – 188. · Zbl 0167.11501 · doi:10.1002/cpa.3160220203 · doi.org
[60] Hans Lewy and Guido Stampacchia, On existence and smoothness of solutions of some non-coercive variational inequalities, Arch. Rational Mech. Anal. 41 (1971), 241 – 253. · Zbl 0237.49005 · doi:10.1007/BF00250528 · doi.org
[61] J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493 – 519. · Zbl 0152.34601 · doi:10.1002/cpa.3160200302 · doi.org
[62] E. Magenes, Topics in parabolic equations: some typical free boundary problems, Boundary value problems for linear evolution: partial differential equations (Proc. NATO Advanced Study Inst., Liège, 1976) Reidel, Dordrecht, 1977, pp. 239 – 312. NATO Advanced Study Inst. Ser., Ser. C: Math. and Phys. Sci., Vol. 29.
[63] Silvia Mazzone, Existence and reularity of the solution of certain nonlinear variational inequalities with an obstacle, Arch. Rational Mech. Anal. 57 (1975), 115 – 127. · Zbl 0314.35037 · doi:10.1007/BF00248413 · doi.org
[64] Silvia Mazzone, Un problema di disequazioni variazionali per superficie di curvatura media assegnata, Boll. Un. Mat. Ital. (4) 7 (1973), 318 – 329 (Italian, with English summary). · Zbl 0275.49006
[65] M. Miranda, Frontiere minimali con ostacoli, Ann. Univ. Ferrara Sez. VII (N.S.) 16 (1971), 29 – 37 (Italian, with French summary). · Zbl 0266.49036
[66] Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0142.38701
[67] M. K. V. Murthy and G. Stampacchia, A variational inequality with mixed boundary conditions, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), 1972, pp. 188 – 224 (1973). · Zbl 0255.35027 · doi:10.1007/BF02760237 · doi.org
[68] J. Puel, Un probleme de valeurs propres non lineare et de frontiére libre, C. R. Acad. Sci. Paris 284 (1977), 861-864.
[69] David G. Schaeffer, Some examples of singularities in a free boundary, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 1, 133 – 144. · Zbl 0354.35033
[70] David G. Schaeffer, Non-uniqueness in the equilibrium shape of a confined plasma, Comm. Partial Differential Equations 2 (1977), no. 6, 587 – 600. · Zbl 0371.35017 · doi:10.1080/03605307708820040 · doi.org
[71] V. D. Shafranov, On magnetohydrodynamical equilibrium configurations, Soviet Physics JETP 6 (1958), 545 – 554. · Zbl 0081.21801
[72] Guido Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 1, 189 – 258 (French). · Zbl 0151.15401
[73] Guido Stampacchia, Variational inequalities, Theory and Applications of Monotone Operators (Proc. NATO Advanced Study Inst., Venice, 1968) Edizioni ”Oderisi”, Gubbio, 1969, pp. 101 – 192.
[74] Guido Stampacchia, Variational inequalities, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 877 – 883. · Zbl 0241.35001
[75] G. Stampakk\(^{\prime}\)ja, On the filtration of fluid through a porous medium with variable cross section, Uspehi Mat. Nauk 29 (1974), no. 4(178), 89 – 101 (Russian). Translated from the English by T. D. Ventcel\(^{\prime}\); Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ, II.
[76] Guido Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413 – 4416 (French). · Zbl 0124.06401
[77] R. Temam, Variational principles related to the equilibrium shape of a plasma in an axisymmetric torus, J. Plasma Physics (1976).
[78] R. Temam, A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma, Arch. Rational Mech. Anal. 60 (1975/76), no. 1, 51 – 73. · Zbl 0328.35069 · doi:10.1007/BF00281469 · doi.org
[79] R. Temam, Remarks on a free boundary value problem arising in plasma physics, Comm. Partial Differential Equations 2 (1977), no. 6, 563 – 585. · Zbl 0355.35023 · doi:10.1080/03605307708820039 · doi.org
[80] Tsuan Wu Ting, Elastic-plastic torsion problem. III, Arch. Rational Mech. Anal. 34 (1969), 228 – 244. · Zbl 0179.53903 · doi:10.1007/BF00281140 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.